The interception process in subalpine Norway spruce stands plays an important role in the distribution of throughfall. The natural mountain spruce forest where our measurements of throughfall and gross precipitation were carried out, is located on the tree line at an elevation of 1,420 m a.s.l. in the Western Tatra Mountains (Slovakia, Central Europe). This paper presents an evaluation of the interception process in a natural mature spruce stand during the growing season from May to October in 2018–2020. We also analyzed the daily precipitation events within each growing season and assigned to them individual synoptic types. The amount and distribution of precipitation during the growing season plays an important role in the precipitation-interception process, which confirming the evaluation of individual synoptic situations. During the monitored growing seasons, precipitation was normal (2018), sub-normal (2019) and above-normal (2020) in comparison with long-term precipitation (1988–2017). We recorded the highest precipitation in the normal and above-normal precipitation years during the north-eastern cyclonic synoptic situation (NEc). During these two periods, interception showed the lowest values in the dripping zone at the crown periphery, while in the precipitation sub-normal period (2019), the lowest interception was reached by the canopy gap. In the central crown zone near the stem, interception reached the highest value in each growing season. In the evaluated vegetation periods, interception reached values in the range of 19.6–24.1% of gross precipitation total in the canopy gap, 8.3–22.2% in the dripping zone at the crown periphery and 45.7–51.6% in the central crown zone near the stem. These regimes are expected to change in the Western Tatra Mts., as they have been affected by windstorms and insect outbreaks in recent decades. Under disturbance regimes, changes in interception as well as vegetation, at least for some period of time, are unavoidable.
In the first part the paper gives an overview of the research activities in experimental microbasins of the Institute of Hydrology of the Slovak Academy of Science (IH SAS) in Strážov highlands during 47-years period of the years 1958 - 2005. The present state of the research in experimental basins is discussed. Due to current personal and financial situation it is time to re-evaluate and decide if operation of such experimental field base is still bearable for the institute. In the second part of the paper, the monthly interception of two catchments with different forest cover is estimated with simple regression relationships. The interception of the hornbeam forest in Lesný basin was monitored during the vegetation seasons 1981 - 1990. Its values were between 12.4 - 23.0 %. The hornbeam vegetation catches 18.4 % of precipitation in average. The interception of the spruce vegetation (Cingeľová basin) was between 30.2 - 40.8 % in 1981 - 1990 with the mean value of 36.9 %. Concerning the monthly values the highest mean interception in hornbeam forest was in June - 20.7 mm, and the lowest one in October - only 7.8 mm. In the spruce forest the interception was higher, in June it was 38.8 mm, in October 16.6 mm in average. Generally the results show that the monthly interception of the hornbeam forest is only 48 % of the spruce forest interception. and Prvá časť príspevku uvádza prehľad výskumných aktivít v experimentálnych mikropovodiach Ústavu hydrológie SAV v Strážovskej vrchovine za 47-ročné obdobie 1958-2005 a stručný opis súčasného stavu výskumu v Prírodnom hydrologickom laboratóriu (PHL). Súčasná personálna a finančná situácia pracoviska si vyžaduje zhodnotenie možností a prijatie rozhodnutia o pokračovaní existencie takéhoto detašovaného pracoviska a zabezpečenia výskumu v ňom. V druhej časti článku sú na základe meraných údajov intercepcie odvodené jednoduché regresné vzťahy umožňujúce odhadnúť mesačnú intercepciu v povodiach s hrabovou (povodie Lesný) a smrekovou (povodie Cingeľová) monokultúrou. Podkorunné zrážky v experimentálnych mikropovodiach Lesný a Cingeľová (a stok po kmeni v hrabovom poraste) boli pozorované v dennom kroku vo vegetačných obdobiach rokov 1981-1990. Hodnoty intercepcie vegetačného obdobia hrabového porastu sa pohybovali v rozmedzí 12,4-23,0 %. V priemere hrabový porast zachytáva 18,4 % zrážok. Intercepcia vegetačného obdobia smrekového porastu sa pohybovala medzi 30,2-40,8 % s priemernou hodnotou 36,9 %. Najvyššia priemerná mesačná hodnota intercepcie v hrabovom lese bola v júni - 20,7 mm a najnižšia v októbri - iba 7,8 mm. V smrekovom lese boli hodnoty intercepcie vyššie, v priemere v júni 38,8 mm a v októbri 16,6 mm. Vo všeobecnosti mesačná intercepcia hrabového porastu vegetačného obdobia dosahuje iba 48 % intercepcie smrekového porastu.
Open area rainfall and throughfall measurements in the Western Tatra Mountains (altitude about 1500 m a.s.l.) made by tipping bucket gauges were used to estimate the usefulness of the short-time data in analysis of spruce interception. The 10-minute data from period 13 May-13 October 2009 did not reveal meaningful correlations between the open area rainfall and throughfall. Aggregated measurements representing individual rainfall events were more useful. They showed linear relationship between open area rainfall and throughfall for events with total rainfall depth in the open area exceeding 5 mm. Correlation between open area rainfall and throughfall for rainfall events with duration above 120 minutes was significantly better than for the shorter ones. Mean values of interception (percentage of open area rainfall which did not appear in throughfall) of individual rainfall events was high. When we excluded events for which throughfall was higher than the open area rainfall, mean interception for larger and longer rainfall events was 46% and 48%, respectively. For smaller (runoff depth below 5 mm) and shorter events (duration below 2 hours) the mean interception was 70% and 72%, respectively. However, the data revealed very high variability of interception. and Príspevok sa zaoberá hodnotením užitočnosti krátkodobých meraní zrážok na otvorenej ploche a v smrekovom lese pri určovaní intercepcie. Vychádza z merania zrážok preklápacími zrážkomermi v Západných Tatrách v nadmorskej výške okolo 1500 m n.m. Desaťminútové údaje merané v období 13.5.- 13.10.2009 neposkytli použiteľné korelácie medzi dažďom na otvorenej ploche a v lese. Lepšie výsledky boli získané pre sumárne úhrny zrážok pre jednotlivé dažde. Ak úhrn dažďa na voľnej ploche prekročil približne 5 mm, veľkosť podkorunových zrážok rástla lineárne s veľkosťou zrážok na voľnej ploche. Korelácia medzi zrážkami na voľnej ploche a v lese pre dažde s dĺžkou trvania nad 120 minút bola podstatne lepšia, ako pre kratšie dažde. Priemerná hodnota intercepcie (vyjadrenej ako percento zrážok na voľnej ploche, ktoré sa neobjavilo v lese) pre jednotlivé zrážkové udalosti bola vysoká. Po vylúčení udalostí, pre ktoré bol v lese nameraný vyšší úhrn zrážok ako na voľnej ploche, bola priemerná intercepcia pre väčšie dažďe 46 % a pre dlhšie dažde 48 %. Pre menšie (úhrn pod 5 mm) a kratšie (trvanie pod 2 hodiny) dažde bola priemerná intercepcia 70 % a 72%. Hodnoty intercepcie pre jednotlivé udalosti však mali veľkú variabilitu.
In this paper, to evaluate the hydrological effects of Caragana korshinskii Kom., measured data were combined with model-simulated data to assess the C. korshinskii soil water content based on water balance equation. With measured and simulated canopy interception, plant transpiration and soil evaporation, soil water content was modeled with the water balance equation. The monthly variations in the modeled soil water content by measured and simulated components (canopy interception, plant transpiration, soil evaporation) were then compared with in situ measured soil water content. Our results shows that the modeled monthly water loss (canopy interception + soil evaporation + plant transpiration) by measured and simulated components ranges from 43.78 mm to 113.95 mm and from 47.76 mm to 125.63 mm, respectively, while the monthly input of water (precipitation) ranges from 27.30 mm to 108.30 mm. The relative error between soil water content modeled by measured and simulated components was 6.41%. To sum up, the net change in soil water (ΔSW) is negative in every month of the growing season. The soil moisture is approaching to wilting coefficient at the end of the growth season, and the soil moisture recovered during the following season.