The distribution of arthropod species on a 400 m elevational gradient (equivalent to a temperature decrease of 2.5°C) on Snowdon, North Wales, was examined and compared with the British distribution. Preferred temperature, an indication of optimal body temperature (Tb), and supercooling point (SCP), an indication of cold tolerance, of several species on the gradient were determined experimentally. The alpine beetle species Patrobus assimilis and Nebria rufescens had low preferred Tb, of 5.6 and 7.1°C respectively, whereas the more widespread upland species had higher preferred Tb, between 12.9 and 15.5°C. The SCP of both alpine and widespread beetles were similar, being between -6.9 and -5.8°C. The alpine species, which were smaller, were freeze intolerant, whereas the widespread species, which were larger, were freeze tolerant. On the national scale there was significant correlation between preferred Tb and species elevation, but no correlation with SCP. It is concluded that the alpine species survive on Snowdon because their optimal Tb is close to the ambient temperature at the time of day and year when they are active and because they are able to tolerate winter temperatures, by a combination of cold tolerance and shelter. Although a species' optimal niche will tend to shift upwards as mean temperatures rise with global climatic change, complex microclimatic and biotic factors make changes in distribution difficult to predict.
The Chinese pine caterpillar Dendrolimus tabulaeformis is an important destructive leaf borer in boreal coniferous forests in China. This species overwinters in the larval stage. Changes in supercooling capacity and physiological-biochemical parameters of D. tabulaeformis larvae from a natural population were evaluated at different stages during the overwintering period. Cold hardiness of overwintering larvae collected in January was significantly greater than that of larvae collected in other months. January larvae survived for 15 days at -10°C and for approximately 2 days at -15°C. By contrast, larvae collected in September survived for no more than 4 h at -5°C and those in November and March no more than 1 day at -15°C. Supercooling point gradually decreased from -5.9 ± 0.3°C in September to a minimum of -14.1 ± 1.0°C in November, then gradually increased to the original value with the advent of spring. Water content gradually decreased from September to November, remained at approximately 74.5% until March and then gradually increased to levels similar to those in September. The lipid content gradually decreased from September to November, remained stable at approximately 3.2% until March and then gradually increased to levels similar to those in September. Glycogen content increased to a peak in November and then decreased. The concentrations of several metabolites showed significant seasonal changes. The most prominent metabolite was trehalose with a seasonal maximum in November. Glucose levels were highest in January and then gradually decreased until in May they were at levels similar to those in September. Glycerol levels remained relatively stable during winter but increased significantly in May. This study indicates that D. tabulaeformis is a freeze-avoidant insect. Larvae increase their supercooling capacity by regulating physiological-biochemical parameters during overwintering., Yuying Shao, Yuqian Feng, Bin Tian, Tao Wang, Yinghao He, Shixiang Zong., and Obsahuje bibliografii
I investigated the seasonal changes of cold tolerance and polyol content in adults of Harmonia axyridis to elucidate their overwintering strategy. Adults decreased their supercooling point and lower lethal temperature only during the winter. Although the seasonal trends for both values were almost consistent, there seemed to be considerable mortality, without being frozen, at -20°C in mid-winter. The pattern for seasonal change in tolerance at moderately low temperatures differed among the temperatures exposed: the survival time at -5°C peaked in winter, but the time at 5 or 0°C peaked in autumn. Because both autumn and winter adults were completely paralyzed only at -5°C and survived much longer at 0°C than at 5°C, the survival time at -5°C indicates the degree of chilling tolerance, whereas the time at 5 or 0°C seems to show starvation tolerance. This beetle accumulated a relatively large amount of myo-inositol during winter. Myo-inositol content synchronized seasonally with supercooling capacity, the lower lethal temperature and the chilling tolerance, suggesting that myo-inositol may play some role in the control of cold tolerance in this beetle.
Seasonal variations in the supercooling point, survival at low temperatures and sugar content were studied in field-collected codling moth larvae. The supercooling point of field-collected larvae decreased significantly from a mean value of -13.4°C in August 2004 (feeding larvae) to -22.0°C in December 2004 (overwintering larvae). Survival at -20°C/24 h was 0% during early autumn, whereas it increased to approximately 60% during winter. The survival at low temperature was well correlated with the supercooling point. The supercooling point of the diapause destined larvae decreased from -16.9 to -19.7°C between September and October as the larvae left the food source and spun a cocoon. For early-diapause larvae, exposure to 5°C/30 days has an additional effect and decreased the supercooling point from -19.7 to -21.3°C. One-month exposure of overwintering larvae to 5°C led to a mortality of 23% in early diapause larvae, while only 4% of diapause larvae died after acclimation. Overwintering larvae accumulated trehalose during winter. There was approximately a threefold increase in trehalose content between larvae at the onset of diapause (5.1 mg/g fresh weight) and larvae in a fully developed diapause (18.4 mg/g fresh weight) collected in January. Trehalose content was correlated with supercooling capacity, survival at low temperatures and chilling tolerance, suggesting that trehalose may play some role in the development of cold tolerance in this species.
Larval diapause development and termination and some characteristics of cold hardiness in Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) were studied under field conditions in northern Greece. P. gossypiella overwintering larvae were sampled at 20 to 30 day intervals and subjected to two photoperiodic regimes at 20°C. In larvae kept under a long-day photoperiod (16L : 8D) diapause development was accelerated compared to those kept under a short-day photoperiod (8L : 16D). There was no difference in response to the two photoperiods after February. Mean number of days to pupation of P. gossypiella overwintering larvae decreased progressively through the sampling period, from November to April. Chilling is not a prerequisite but does accelerate diapause development. Supercooling points for P. gossypiella overwintering larvae ranged from -14 to -17°C with the majority dying after freezing.
Modality in the supercooling points of cold tolerant but freezing intolerant terrestrial arthropods has proved a pragmatically reliable means of distinguishing between summer and winter cold hardiness in such species. This paper proposes an ecologically realistic method of modal analysis which may either be used in lieu of the traditional separation of supercooling points into "high" and "low" groups, or as a complementary assessment of the risk of freezing mortality. Instead of a posteriori determinations of modal break points, animal supercooling points are assigned a priori to one of four categories of cold hardiness: (1) summer cold-hardy; (2) semi-cold-hardy; (3) cold-hardy; and (4) winter cold-hardy. Each category is identified by the temperature range within which arthropods can be expected to freeze. The temperature ranges assigned to each category are based on a conservative, but realistic, assessment of the temperatures at which animals can be expected to freeze at a given point in the season. The approach has greater discriminatory power than traditional bimodal descriptors (i.e."summer" and "winter" cold-hardy), as well as allowing animal supercooling points to be related to the temperatures they actually experience in their habitats. Thus, for example, animals considered "summer" cold-hardy according to conventional analysis may actually be "semi-cold-hardy" with supercooling points well within the safety margin of minimum ambient temperatures.
The Asian long-horned beetle, Anoplophora glabripennis, is a serious destructive pest of forests throughout China as it attacks a wide range of host plants. The effect of host trees on the cold hardiness of A. glabripennis larvae could be the basis for predicting the performance of this forest pest on different common hosts.To evaluate the effect of different species of host plant on the cold hardiness of overwintering larvae of A. glabripennis, we measured the supercooling point (SCP), fresh mass, protein content and concentrations of low molecular weight substances in overwintering larvae collected from three different host species (i.e., Populus opera, Populus tomentosa and Salix matsudana). Mean SCPs and protein contents of larvae from these three hosts differed significantly. The SCPs and protein contents of the larvae collected from P. opera and P. tomentosa were significantly higher than those collected from S. matsudana. The concentrations of glycerol, glucose and trehalose in overwintering larvae collected from these host species also differed significantly, but there were no significant differences in the concentrations of sorbitol and inositol. The larvae that were collected from S. matsudana had the highest concentrations of glycerol and trehalose and those from P. opera the lowest contents of glycerol, whereas those from P. tomentosa had the lowest concentrations of trehalose but the highest concentrations of glucose. Because of the significant differences in the quantities of these biochemical substances in their bodies, the cold hardiness of overwintering larvae of A. glabripennis was significantly dependent on the tree they fed on. These effects on the cold hardiness of the overwintering larvae might affect the selection of a host tree and therefore the spread of this beetle. and Yuqian Feng, Reaxit Tursun, Zhichun Xu, Fang Ouyang, Shixiang Zong.
When puparia of the onion maggot Delia antiqua were preexposed to 5°C for 5 days starting at different time points after pupariation, a large increase in survival after exposure to -20°C for 5 days was observed only when pre-exposure was initiated at 3-6 days after pupariation. The increase in cold hardiness was not associated with a large increase in the trehalose content of the puparia. The supercooling point of the puparia naturally decreased from -18 to -27°C in the first three days after pupariation, and pre-exposure to 5°C did not have an additional effect. Thus, factors responsible for the enhancement of cold hardiness by acclimation other than trehalose and supercooling point should be sought. The period of responsiveness to cold acclimation coincided with the time soon after head evagination, which corresponds to "pupation" in lepidopteran insects. The puparia appear to be physiologically flexible for a short time after head evagination, and able to adapt their physiology to the contemporary cold environment.
Until recently, the Canadian distribution of the blueberry maggot, Rhagoletis mendax Curran (Diptera: Tephritidae), was restricted to Nova Scotia, Prince Edward Island and New Brunswick. The insect was first mentioned in southern Quebec in 1996 and, to date, it has not reached the Lac St-Jean region, where 34% of Canadian blueberry acreage is located. Two questions concerning the northern limit of distribution of the blueberry maggot in Quebec were addressed. First, are wild plants suitable hosts for larval development? We collected the fruit of five wild plants, (e.g. Vaccinium corymbosum, Vaccinium angustifolium, Vaccinium myrtilloides, Gaylussacia baccata, and Aronia melanocarpa) growing in southern Quebec and allowed larvae to complete their development into pupae. Blueberry maggot pupae were recovered from Vaccinium corymbosum, Vaccinium angustifolium, and Gaylussacia baccata, indicating that these plants are suitable for larval development. Second, are harsh winter temperatures a factor limiting the northern distribution of the blueberry maggot? Pupae collected in Quebec and Nova Scotia were put in the soil in the fall and were brought back to the laboratory to determine their supercooling points at different times during winter. The supercooling points of pupae collected in Quebec and Nova Scotia averaged -22.6°C. In natural conditions, air temperatures <-20°C are frequently observed in Quebec in January, February and March. However, due to snow cover, soil temperatures are rarely <-12°C. If -22.6°C constitutes the lower limit for the survival, then winter temperatures are probably not a limiting factor to its northern distribution in Quebec, because blueberry maggot pupae overwinter in the soil., Charles Vincent, Pierre Lemoyne, Sonia Gaul, Kenna Mackenzie., and Obsahuje bibliografii
Cold tolerance of the eggs of the grasshopper, Chorthippus fallax (Zubovsky), was examined in the laboratory. Egg supercooling points varied from -6°C to -32.4°C and could be divided into two groups. The supercooling points of the higher SCP group ranged from -6°C to -14°C and those of lower SCP group from -21.8°C to -32.4°C. Although low temperature acclimation could slightly decrease the supercooling points of eggs, the effect was not significant for all embryonic developmental stages or acclimation periods. The supercooling capacity was obviously different between pre-diapause, diapause and post-diapause embryonic stages. The mean supercooling points of pre-diapause and diapause eggs were similar; -28.8 ± 1.6°C and -30.7 ± 1.0°C for non-acclimated eggs and -29.5 ± 1.3°C and -31.18 ± 0.8°C for acclimated eggs respectively. However, the mean supercooling points of post-diapause eggs were significantly higher; -12.9 ± 5.6°C for non-acclimated and -13.5 ± 4.5°C for acclimated eggs respectively. The survival rates of diapause eggs at > -25°C were not significantly different from that at 25°C, but survival rates at < -30°C decreased significantly. The lethal temperature (Ltemp50) for a 12 hrs exposure was -30.1°C, and the lethal time (Ltime50) at -25°C was 44 days. Since the SCPs of diapause eggs was similar to their Ltemp50, we may consider the supercooling capacity of such eggs is a good indicator of their cold hardiness and the species is a true freeze avoiding insect. Based on the analysis of local winter temperature data, pre-diapause and diapause, low SCP eggs can safely survive severe winters, but not the post-diapause, high SCP eggs. The importance of the overwintering strategy and the relationship between diapause and cold hardiness of this species is discussed.