Seasonal variations in the supercooling point, survival at low temperatures and sugar content were studied in field-collected codling moth larvae. The supercooling point of field-collected larvae decreased significantly from a mean value of -13.4°C in August 2004 (feeding larvae) to -22.0°C in December 2004 (overwintering larvae). Survival at -20°C/24 h was 0% during early autumn, whereas it increased to approximately 60% during winter. The survival at low temperature was well correlated with the supercooling point. The supercooling point of the diapause destined larvae decreased from -16.9 to -19.7°C between September and October as the larvae left the food source and spun a cocoon. For early-diapause larvae, exposure to 5°C/30 days has an additional effect and decreased the supercooling point from -19.7 to -21.3°C. One-month exposure of overwintering larvae to 5°C led to a mortality of 23% in early diapause larvae, while only 4% of diapause larvae died after acclimation. Overwintering larvae accumulated trehalose during winter. There was approximately a threefold increase in trehalose content between larvae at the onset of diapause (5.1 mg/g fresh weight) and larvae in a fully developed diapause (18.4 mg/g fresh weight) collected in January. Trehalose content was correlated with supercooling capacity, survival at low temperatures and chilling tolerance, suggesting that trehalose may play some role in the development of cold tolerance in this species.
When puparia of the onion maggot Delia antiqua were preexposed to 5°C for 5 days starting at different time points after pupariation, a large increase in survival after exposure to -20°C for 5 days was observed only when pre-exposure was initiated at 3-6 days after pupariation. The increase in cold hardiness was not associated with a large increase in the trehalose content of the puparia. The supercooling point of the puparia naturally decreased from -18 to -27°C in the first three days after pupariation, and pre-exposure to 5°C did not have an additional effect. Thus, factors responsible for the enhancement of cold hardiness by acclimation other than trehalose and supercooling point should be sought. The period of responsiveness to cold acclimation coincided with the time soon after head evagination, which corresponds to "pupation" in lepidopteran insects. The puparia appear to be physiologically flexible for a short time after head evagination, and able to adapt their physiology to the contemporary cold environment.
Haemolymph levels of amino acids, sugars and glycerol were investigated in the tenebrionid Physadesmia globosa during dehydration and rehydration. The absolute amount of amino acid decreases during dehydration and increases during rehydration, indicating active regulation of this solute (the osmolal contribution of amino acids is large - approx. 25%). Changes in the amino acid content of the haemolymph during dehydration are not the result of interchange with soluble protein; the possibility exists during rehydration (between 1 h and 48 h). Trehalose and glucose are the only sugars found in appreciable quantity in the haemolymph of this species. Their osmolal contributions (total sugar: 2.6%), and contributions to osmoregulation, are not great. Glycerol is a minor osmolar effector in the haemolymph of Physadesmia, and changes in its levels do not contribute importantly to the regulation of haemolymph osmotic pressure.
Cryptobiosis is the state when the metabolic activity of an organism is hardly measurable or is reversibly at a standstill. Many groups of invertebrates have this ability, and can be divided into two types according to the developmental stage in which it occurs; embryonic (eggs) or post-embryonic stages (larvae and adults). The latter must be able to reversibly regulate the physiology and biochemistry of development and cryptobiosis. There are several reviews on cryptobiosis and its regulation, but none on the physiological mechanism of cryptobiosis in chironomids. The present paper reviews the physiological traits of invertebrates entering cryptobiosis in a post-embryonic stage. These unique phenomena, which occur in a post-embryonic stage of three groups of cryptobiotic invertebrates (insects, tardigrades and nematodes) are discussed with particular reference to; 1) the behavioural and physiological adaptations of cryptobiotic invertebrates, 2) role of trehalose in cryptobiosis and 3) regulation of cryptobiosis.
The activity of α-amylase, glucoamylase, maltase, trehalase, glycogen phosphorylase and trehalose phosphorylase was measured in extracts from larval and adult Hysterothylacium aduncum (Rudolphi, 1802), parasitic nematode of marine fish. The content of glycogen and trehalose in the worm's body was also determined. Both the hydrolytic and phosphorolytic paths of sugar decomposition are present in H. aduncum. In the larvae glycogen was utilised mainly via the hydrolytic path. In the adults the activities of phosphorolytic enzymes were higher than in the larvae. In both stages the activity of trehalose phosphorylase is present. In adult nematodes it is uncommonly high. The dominating sugars in the adults were glucose and glycogen, while in the larvae it was trehalose.