The acidic tumor microenvironment (TME) of pancreatic cancer affects the physiological function of pancreatic stellate cells (PSCs), which in turn promotes cancer progression. Acid-sensing ion channel 1a (ASIC1a) is responsible for acidosis-related physiopathological processes. In this study, we investigated the effect of acid exposure on the activation and autophagy of PSCs, and the role of ASIC1a in these events. The results showed that acidic medium upregulated the expression of ASIC1a, induced PSCs activation and autophagy, which can be suppressed by inhibiting ASIC1a using PcTx1 or ASIC1a knockdown, suggesting that ASIC1a involves these two processes. In addition, the acidinduced activation of PSCs was impaired after the application of autophagy inhibitor alone or in combination with ASIC1a siRNA, meaning a connection between autophagy and activation. Collectively, our study provides evidence for the involvement of ASIC1a in the acid-caused PSCs activation, which may be associated with autophagy induction.
The Chinese pine caterpillar Dendrolimus tabulaeformis is an important destructive leaf borer in boreal coniferous forests in China. This species overwinters in the larval stage. Changes in supercooling capacity and physiological-biochemical parameters of D. tabulaeformis larvae from a natural population were evaluated at different stages during the overwintering period. Cold hardiness of overwintering larvae collected in January was significantly greater than that of larvae collected in other months. January larvae survived for 15 days at -10°C and for approximately 2 days at -15°C. By contrast, larvae collected in September survived for no more than 4 h at -5°C and those in November and March no more than 1 day at -15°C. Supercooling point gradually decreased from -5.9 ± 0.3°C in September to a minimum of -14.1 ± 1.0°C in November, then gradually increased to the original value with the advent of spring. Water content gradually decreased from September to November, remained at approximately 74.5% until March and then gradually increased to levels similar to those in September. The lipid content gradually decreased from September to November, remained stable at approximately 3.2% until March and then gradually increased to levels similar to those in September. Glycogen content increased to a peak in November and then decreased. The concentrations of several metabolites showed significant seasonal changes. The most prominent metabolite was trehalose with a seasonal maximum in November. Glucose levels were highest in January and then gradually decreased until in May they were at levels similar to those in September. Glycerol levels remained relatively stable during winter but increased significantly in May. This study indicates that D. tabulaeformis is a freeze-avoidant insect. Larvae increase their supercooling capacity by regulating physiological-biochemical parameters during overwintering., Yuying Shao, Yuqian Feng, Bin Tian, Tao Wang, Yinghao He, Shixiang Zong., and Obsahuje bibliografii