The Chinese pine caterpillar Dendrolimus tabulaeformis is an important destructive leaf borer in boreal coniferous forests in China. This species overwinters in the larval stage. Changes in supercooling capacity and physiological-biochemical parameters of D. tabulaeformis larvae from a natural population were evaluated at different stages during the overwintering period. Cold hardiness of overwintering larvae collected in January was significantly greater than that of larvae collected in other months. January larvae survived for 15 days at -10°C and for approximately 2 days at -15°C. By contrast, larvae collected in September survived for no more than 4 h at -5°C and those in November and March no more than 1 day at -15°C. Supercooling point gradually decreased from -5.9 ± 0.3°C in September to a minimum of -14.1 ± 1.0°C in November, then gradually increased to the original value with the advent of spring. Water content gradually decreased from September to November, remained at approximately 74.5% until March and then gradually increased to levels similar to those in September. The lipid content gradually decreased from September to November, remained stable at approximately 3.2% until March and then gradually increased to levels similar to those in September. Glycogen content increased to a peak in November and then decreased. The concentrations of several metabolites showed significant seasonal changes. The most prominent metabolite was trehalose with a seasonal maximum in November. Glucose levels were highest in January and then gradually decreased until in May they were at levels similar to those in September. Glycerol levels remained relatively stable during winter but increased significantly in May. This study indicates that D. tabulaeformis is a freeze-avoidant insect. Larvae increase their supercooling capacity by regulating physiological-biochemical parameters during overwintering., Yuying Shao, Yuqian Feng, Bin Tian, Tao Wang, Yinghao He, Shixiang Zong., and Obsahuje bibliografii
The Asian long-horned beetle, Anoplophora glabripennis, is a serious destructive pest of forests throughout China as it attacks a wide range of host plants. The effect of host trees on the cold hardiness of A. glabripennis larvae could be the basis for predicting the performance of this forest pest on different common hosts.To evaluate the effect of different species of host plant on the cold hardiness of overwintering larvae of A. glabripennis, we measured the supercooling point (SCP), fresh mass, protein content and concentrations of low molecular weight substances in overwintering larvae collected from three different host species (i.e., Populus opera, Populus tomentosa and Salix matsudana). Mean SCPs and protein contents of larvae from these three hosts differed significantly. The SCPs and protein contents of the larvae collected from P. opera and P. tomentosa were significantly higher than those collected from S. matsudana. The concentrations of glycerol, glucose and trehalose in overwintering larvae collected from these host species also differed significantly, but there were no significant differences in the concentrations of sorbitol and inositol. The larvae that were collected from S. matsudana had the highest concentrations of glycerol and trehalose and those from P. opera the lowest contents of glycerol, whereas those from P. tomentosa had the lowest concentrations of trehalose but the highest concentrations of glucose. Because of the significant differences in the quantities of these biochemical substances in their bodies, the cold hardiness of overwintering larvae of A. glabripennis was significantly dependent on the tree they fed on. These effects on the cold hardiness of the overwintering larvae might affect the selection of a host tree and therefore the spread of this beetle. and Yuqian Feng, Reaxit Tursun, Zhichun Xu, Fang Ouyang, Shixiang Zong.