Changium smyrnioides Wolff. and Anthriscus sylvestris (L.) Hoffm. have similar photosynthetic characters; they use radiant energy in winter and early spring effectively, but cannot take full advantage of higher irradiance after spring. The specific leaf area (SLA), leaf area ratio (LAR), and leaf mass ratio (LMR) of C. smyrnioides were lower than those of A. sylvestris. The photosynthetic period of C smyrnioides was about 160 d shorter than that of A. sylvestris, causing the total photosynthetic production of C. smyrnioides to be lower than that of A. sylvestris. Hence if C. smyrnioides is disturbed, it could not recover within a short period. and J. Chang ... [et al.].
Cost-benefit analysis of foliar construction and maintenance costs and of carbon assimilation of leaves of differing life-span were conducted using two evergreen, three semi-deciduous, and three deciduous tree species of savannas of north Australia. Rates of radiant-energy-saturated CO2 assimilation (Pmax) and dark respiration were measured and leaves were analysed for total nitrogen, fat, and ash concentrations, and for heat of combustion. Specific leaf area, and leaf N and ash contents were significantly lower in longer-lived leaves (evergreen) than shorter-lived leaves (deciduous) species. Leaves of evergreen species also had significantly higher heat of combustion and lower crude fat content than leaves of deciduous species. On a leaf area basis, Pmax was highest in leaves of evergreen species, but on a leaf dry mass basis it was highest in leaves of deciduous species. Pmax and total Kieldahl N content were linearly correlated across all eight species, and foliar N content was higher in leaves of deciduous than evergreen species. Leaf construction cost was significantly higher and maintenance costs were lower for leaves of evergreen than deciduous species. Maintenance and construction costs were linearly related to each other across all species. Leaves of evergreen species had a higher cost-benefit ratio compared to leaves of deciduous species but with longer lived leaves, the payback interval was longer in evergreen than deciduous species. These results support the hypotheses that longer lived leaves are more expensive to construct than short-lived leaves, and that a higher investment of N into short-lived leaves occurs which supports a higher Pmax over a shorter payback interval. and D. Eamus ... [et al.].
We studied gas exchange of leaves on branches that had been cut and then re-cut under water to assess the utility of measuring gas exchange on leaves of excised canopy branches. There was large variation between species in their ability to photosynthesize following excision. Some species maintained up to 86.5% of intact photosynthetic rate 60 min after excision, whereas other species dropped below 40% of intact photosynthetic rates within 3 min. Three species showed significant reductions in maximum rates of gross photosynthetic rate (PG) on leaves of excised branches relative to intact branches. Excision significantly reduced carboxylation rates (Vcmax) in four species and electron transport (Jmax) in two species. There were also significant increases in compensation irradiance and reductions of day rates of respiration relative to intact measurements. While gas exchange on excised branches can provide useful measures for canopy species, responses of individual species to branch excision need to be taken into account. Measurements on pre-screened species allow a greater understanding of canopy photosynthesis of large trees when canopy access is not an option. and L. S. Santiago, S. S. Mulkey.
Photosynthetic traits of two-year-old Japanese larch seedlings (Larix kaempferi Carr.) grown at elevated CO2 concentrations were studied in relation to structural changes in the needles. Seedlings were grown at two CO2 concentrations, 360 (AC) and 720 (EC) μmol mol-1 at high and low nutrient supply rates, high N (HN) and low N (LN). The photosynthetic capacity fell significantly in EC+LN, but increased significantly in EC+HN. Since the mesophyll surface area exposed to intercellular space per unit leaf area (Ames/A) is correlated with the photosynthetic rate, we measured Ames/A for larch needles growing in EC. Changes of Ames/A in both EC+HN and EC+LN were very similar to the changes in photosynthetic capacity. This suggests that the changes of Ames/A in EC probably caused the changes in the photosynthetic capacity. The changes of Ames/A in EC were attributed to changes in the mesophyll cell size and mesophyll cell number. The photosynthetic capacity in EC can be explained by taking morphological and structural adaptations into account as well as biochemical factors. and N. Eguchi ... [et al.].
Growth, net photosynthetic rate (PN), chlorophyll fluorescence induction kinetics, and stromal fructose-1,6-bisphosphatase (sFBPase) in annual legumes native to the Mediterranean region, two clovers (Trifolium subterraneum L. ssp. oxaloides Nyman cv. Clare and T. michelianum Savi cv. Giorgia) and two Medicago species (M. polymorpha L. cv. Anglona and M. truncatula Gaertn. cv. Paraggio), shifted from 20 to 10 °C for 1 d or developed at 10 °C were compared with controls kept at 20 °C. Cold development produced a larger stimulation of growth in the clover cv. Giorgia and the Medicago cv. Paraggio. Transferring plants to low temperatures affected PN relatively less in clovers than in Medicago plants. Development at 10 °C relieved the inhibition of photosynthesis in Giorgia and Paraggio, but not in Clare and Anglona, which correlated with increases in the maximum rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBPCO (Vcmax), and the photon-saturated rate of electron transport (Jmax). In Medicago, transfer from high to low temperature inhibited photosynthesis in a lesser extent in Anglona than in Paraggio, which showed severe limitations at level of Vcmax and Jmax. Development at 10 °C in Paraggio produced an efficient photosynthetic cold acclimation, this being associated with a two-fold increase of quantum yield of photosystem 2 electron transport (ΔF/F'm) and with the activity of sFBPase. By contrast, Anglona showed an irreversible inhibition of PN coupled with the reduction of carbon metabolism by impairment of Calvin cycle enzyme activities such as RuBPCO and sFBPase, resulting in a poor cold acclimation of photosynthesis in this cultivar. and M. C. Antolín, M. Hekneby, M. Sánchez-Díaz.
It is expected that environmental conditions impact the distribution of galls on host plants. Moreover, insects may induce their galls randomly or choose certain parts of a host to induce such growths. This study aimed to determine whether or not the gall midge, Hartigiola annulipes (Diptera: Cecidomyiidae), which induces galls on leaves of the European beech (Fagus sylvatica), prefers leaves facing a particular cardinal direction. In addition, we wanted to ascertain whether the galls are evenly spread across three leaf zones: proximal, median and distal, distinguished by dividing leaf area along the midrib. The results show that H. annulipes chose leaves facing various directions in different studied locations, and leaf choice is not restricted to the specific leaf area, a parameter that accurately reflects the light conditions of leaf growth. Moreover, the medial leaf zone was preferred, while the distal zone was avoided. The choice of the leaf zone modified the distance between the mid-rib and a gall. Gall distribution in the crown of trees is probably random, while at the leaf level, it is determined by leaf morphology., Sebastian Pilichowski, Marian J. Giertych., and Obsahuje bibliografii
We investigated the responses of photon-saturated photosynthesis rate (Psat) and its simultaneous acclimation of anatomy and nitrogen use patterns of current needles of Korean pine (Pinus koraiensis) seedlings grown under factorial combinations of two nitrogen levels and irradiances. Although N supply resulted in a significant increase of N content in needles under both irradiances, the increase of P sat tended to be suppressed only in shade (S). The significant increase of P sat in full sunlight (O) was associated with the increase of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and chlorophyll (Chl) contents. In contrast, small increase of Chl content and no increase of RuBPCO content were found in S (90 % cut of full irradiance), which would result in a small increase of Psat. This result suggests that extra N is stocked in needles under shade for the growth in next season. With N supply, a significant decrease of specific leaf area (SLA) was detected only in O. This decrease of SLA was due to the increase of density of needle. Furthermore, the increase of needle density was not due to the increased number and size of mesophyll cells, but the increased density of each mesophyll cell. Therefore, although SLA changed in O, the change did not involve anatomical adaptation to use increased N effectively, at least observable by light microscopy. Hence, even though the SLA would change, N deposition will improve the photosynthetic capacity of Korean pine seedlings, not through the development of needle anatomy but through improvement of the allocation of N in both irradiances. and K. Makoto, T. Koike.
Two-month-old seedlings of Sophora davidii were subjected to a randomized complete block design with three water (80, 40, and 20 % of water field capacity, i.e. FC80, FC40, and FC20) and three N supply [N0: 0, Nl: 92 and Nh: 184 mg(N) kg-1(soil)] regimes. Water stress produced decreased leaf area (LA) and photosynthetic pigment contents, inhibited photosynthetic efficiency, and induced photodamage in photosystem 2 (PS2), but increased specific leaf area (SLA). The decreased net photosynthetic rate (PN) under medium water stress (FC40) compared to control (FC80) might result from stomatal limitations, but the decreased PN under severe water deficit (FC20) might be attributed to non-stomatal limitations. On the other hand, N supply could improve photosynthetic capacity by increasing LA and photosynthetic pigment contents, and enhancing photosynthetic efficiency under water deficit. Moreover, N supply did a little in alleviating photodamages to PS2 caused by water stress. Hence water stress was the primary limitation in photosynthetic processes of S. davidii seedlings, while the photosynthetic characters of seedlings exhibited positive responses to N supply. Appropriate N supply is recommended to improve photosynthetic efficiency and alleviate photodamage under water stress. and F. Z. Wu ... [et al.].
The effect of elevated carbon dioxide (600±50 cm3 m-3; C600) on growth performance, biomass production, and photosynthesis of Cenchrus ciliaris L. cv. 3108 was studied. This crop responded significantly by plant height, leaf length and width, and biomass production under C600. Leaf area index increased triple fold in the crops grown in the open top chamber with C600. The biomass production in term of fresh and dry biomass accumulation increased by 134.35 (fresh) and 193.34 (dry) % over the control (C360) condition where the crops were grown for 20 d. The rate of photosynthesis and stomatal conductance increased by 24.51 and 46.33 %, respectively, in C600 over C360 plants. In comparison with C360, the rate of transpiration decreased by 6.8 % under C600. Long-term exposure (120 d) to C600 enhanced photosynthetic water use efficiency by 34 %. Also the contents of chlorophylls a and b significantly increased in C600. Thus C. ciliaris grown in C600 throughout the crop season may produce more fodder in terms of green biomass. and R. K. Bhatt, M. J. Baig, H. S. Tiwari.
The combined effects of water stress (WS) and low irradiance (LI) on growth, photosynthesis, osmotic adjustment, and lipid peroxidation were studied in dragon spruce (Picea asperata Mast.) seedlings grown under two water treatments (well watered, 100 % of field capacity, and water stressed, 30 % of field capacity) and two irradiances (HI, 100 % of full sunlight and LI, 15 % of full sunlight). WS reduced growth, chlorophyll (Chl) a and b contents, net photosynthetic rate, transpiration rate, stomatal conductance, and effective quantum yield of photosystem 2 (Y) but increased free proline and malondialdehyde contents. LI increased Chl contents and decreased Y, photochemical quenching (qP), and non-photochemical quenching (qN) under both water treatments. Hence the seedlings in the understory were more sensitive to drought than to LI. and Y. Yang ... [et al.].