Two greenhouse experiments were conducted in order to investigate the effects of different levels of water stress on gas exchange, chlorophyll fluorescence, chlorophyll content, antioxidant enzyme activities, lipid peroxidation, and yield of tomato plants (Solanum lycopersicum cv. Jinfen 2). Four levels of soil water content were used: control (75 to 80% of field water capacity), mild water stress (55 to 60%), moderate water stress (45 to 50%), and severe water stress (35 to 40%). The controlled irrigation was initiated from the third leaf stage until maturity. The results of
two-year trials indicated that the stomatal conductance, net photosynthetic rate, light-saturated photosynthetic rate, and saturation radiation decreased generally under all levels of water stress during all developmental stages, while compensation radiation and dark respiration rate increased generally. Water stress also declined maximum quantum yield of PSII photochemistry, electron transfer rate, and effective quantum yield of PSII photochemistry, while nonphotochemical quenching increased in all developmental stages. All levels of water stress also caused a marked reduction of chlorophyll a, chlorophyll b, and total chlorophyll content in all developmental stages, while activities of antioxidant enzymes, such as superoxide dismutase, peroxidase, and catalase, and lipid peroxidation increased., X. K. Yuan, Z. Q. Yang , Y. X. Li, Q. Liu, W. Han., and Obsahuje seznam literatury
The combined effects of water stress (WS) and low irradiance (LI) on growth, photosynthesis, osmotic adjustment, and lipid peroxidation were studied in dragon spruce (Picea asperata Mast.) seedlings grown under two water treatments (well watered, 100 % of field capacity, and water stressed, 30 % of field capacity) and two irradiances (HI, 100 % of full sunlight and LI, 15 % of full sunlight). WS reduced growth, chlorophyll (Chl) a and b contents, net photosynthetic rate, transpiration rate, stomatal conductance, and effective quantum yield of photosystem 2 (Y) but increased free proline and malondialdehyde contents. LI increased Chl contents and decreased Y, photochemical quenching (qP), and non-photochemical quenching (qN) under both water treatments. Hence the seedlings in the understory were more sensitive to drought than to LI. and Y. Yang ... [et al.].
Varied causative and risk factors can lead to cardiac dysfunction. Cardiac dysfunction often evolves into heart failure by cardiac remodeling due to autonomic nervous system disturbance and neurohumoral abnormalities, even if the detriment factors are removed. Renal sympathetic nerve activity plays a pivotal regulatory role in neurohumoral mechanisms. The present study was designed to determine the therapeutic eff ects of renal sympathetic denervation (RSD) on cardiac dysfunction, fibrosis, and neurohumoral response in transverse aortic constriction (TAC) rats with chronic pressure overload. The present study demonstrated that RSD attenuated myocardial fibrosis and hypertrophy, and structural remodeling of the left atrium and ventricle, up -regulated cardiac β adrenoceptor (β -AR, including β 1 AR and β 2 AR) and sarco -endoplasmic reticulum Ca 2+ -ATP ase (SERCA) while down -regulated angiotensin II type 1 receptor (AT 1 R), and decreased plasma B -type natriuretic peptide (BNP), norepinephrine (NE) , angiotensin II (Ang II), and arginine vasopressin (AVP) levels in TAC rats with chronic pressure overload. We conclude that RSD attenuates myocardial fibrosis, the left atrial enlargement, and the left ventricular wall hypertrophy; inhibits the overdrive of the sympathetic ner vous system (SNS), renin- angiotensin -aldosterone system (RAAS), and AVP system in TAC rats with chronic pressure overload . RSD could be a promising non -pharmacological approach to control the progression of cardiac dysfunction., Z.-Z. Li, H. Jiang, D. Chen, Q. Liu, J. Geng, J.-Q. Guo, R.-H. Sun, G.-Q. Zhu, Q.-J. Shan., and Obsahuje bibliografii