We studied gas exchange of leaves on branches that had been cut and then re-cut under water to assess the utility of measuring gas exchange on leaves of excised canopy branches. There was large variation between species in their ability to photosynthesize following excision. Some species maintained up to 86.5% of intact photosynthetic rate 60 min after excision, whereas other species dropped below 40% of intact photosynthetic rates within 3 min. Three species showed significant reductions in maximum rates of gross photosynthetic rate (PG) on leaves of excised branches relative to intact branches. Excision significantly reduced carboxylation rates (Vcmax) in four species and electron transport (Jmax) in two species. There were also significant increases in compensation irradiance and reductions of day rates of respiration relative to intact measurements. While gas exchange on excised branches can provide useful measures for canopy species, responses of individual species to branch excision need to be taken into account. Measurements on pre-screened species allow a greater understanding of canopy photosynthesis of large trees when canopy access is not an option. and L. S. Santiago, S. S. Mulkey.