Although exposure to continuous light is associated with hypertension and modulates the outcome of ischemiareperfusion injury, less attention has been paid to its effects on cardiac morphology. We investigated whether 4-week exposure of experimental rats to continuous 24 h/day light can modify cardiac morphology, with focus on heart weight, fibrosis and collagen I/III ratio in correlation with NO-synthase expression. Two groups of male adult Wistar rats were studied: controls exposed to normal light/dark cycle (12 h/day light, 12 h/day dark) and rats exposed to continuous light. After 4 weeks of treatment the absolute and the relative heart weights were determined and myocardial fibrosis and collagen type I/III ratio were evaluated using picrosirius red staining. Endothelial and inducible NO-synthase expression was detected immunohistochemically. The exposure of rats to continuous light resulted in an increase of body weight with proportionally increased heart weight. Myocardial fibrosis remained unaffected but collagen I/III ratio increased. Neither endothelial nor inducible NO-synthase expression was altered in light-exposed rats. We conclude that the loss of structural homogeneity of the myocardium in favor of collagen type I might increase myocardial stiffness and contribute to functional alterations after continuous light exposure., L'. Paulis, R. Važan, F. Šimko, O. Pecháňová, J. Styk, P. Babál, P. Janega., and Obsahuje bibliografii
Factors modulating cardiac susceptibility to ischemia-reperfusion (I/R) are permannetly attracting the attention of experimental cardiology research. We investigated, whether continuous 24 h/day light exposure of rats can modify cardiac response to I/R, NO-synthase (NOS) activity and the level of oxidative load represented by conjugated dienes (CD) concentration. Two groups of male adult Wistar rats were studied: controls exposed to normal light/dark cycle (12 h/day light, 12 h/day dark) and rats exposed to continuous light for 4 weeks. Perfused isolated hearts (Langendorff technique) were exposed to 25 min global ischemia and subsequent 30 min reperfusion. The recovery of functional parameters (coronary flow, left ventricular developed pressure, contractility and relaxation index) during reperfusion as well as the incidence, severity and duration of arrhythmias during first 10 min of reperfusion were determined. The hearts from rats exposed to continuous light showed more rapid recovery of functional parameters but higher incidence, duration and severity of reperfusion arrhythmias compared to controls. In the left ventricle, the NOS activity was attenuated, but the CD concentration was not significantly changed. We conclude that the exposure of rats to continuous light modified cardiac response to I/R. This effect could be at least partially mediated by attenuated NO production., R. Važan, P. Janega, S. Hojná, J. Zicha, F. Šimko, O. Pecháňová, J. Styk, L'. Paulis., and Obsahuje bibliografii