Neuroprotective effects of estrogens and progesterone have been widely studied in various experimental models. The present study was designed to compare possible neuroprotective effects of 17alpha-estradiol, 17beta-estradiol, and progesterone on oxidative stress in rats subjecte d to global cerebral ischemia. Global cerebral ischemia was induced in ovariectomized female rats by four vessel occlusion for 10 min. Following 72 h of reperfusion, levels of malondialdehyde (MDA, oxidative stress marker), and reduced glutathione (GSH, major endogenous antioxidant) were assessed in hippocampus, striatum and cortex of rats treated with either 17alpha-estradiol, 17beta-estradiol, progesterone or estradiol + progesterone beforehand. Steroid administration ameliorated ischemia-induced decrease in GSH and increase in MDA levels. Our data offers additional evidence that estrogens and progesterone or combination of two exert a remarkable neuroprotective effect reducing oxidative stress., V. H. Ozacmak, H. Sayan., and Obsahuje seznam literatury
The excessive production of nitric oxide (NO) and the subsequent increase of local oxidative stress is suggested as one of the pathophysiological mechanisms of streptozotocin-induced diabetes. It was reported that the administration of NO synthase inhibitors partially attenuated the development of streptozotocin-induced diabetes and reduced hyperglycaemia. Here we have studied the influence of methylene blue, which combines the properties of NO synthase inhibitor with antioxidant effects. The experiments were performed on male rats divided into four groups: control, diabetic (single dose of 70 mg of streptozotocin/kg i.p.), methylene blue (50 mg/kg in the food) and diabetic simultaneously fed with methylene blue. After 45 days the experiments were discontinued by decapitation. Serum glycaemia, glycated haemoglobin and oxidative stress parameters (plasma malondialdehyde concentration and erythrocyte superoxide dismutase activity) were significantly higher in the diabetic group. Simultaneous methylene blue administration partially reduced glycaemia and glycated haemoglobin, but did not decrease oxidative stress. We conclude that NO synthase inhibitor methylene blue partially attenuates the development of streptozotocin-induced diabetes in male rats, but does not reduce the development of oxidative stress in the diabetic group.
For more than sixty years lith ium carbonate has been used in medicine. However, during its administration different side effects including oxidative stress can occur. Selenium belongs to essential elements possessing antioxidant properties. This study aimed at evaluating if selenium co uld be used as a protective adjuvant in lithium therapy. The experiment was performed on four groups of Wistar rats: I (control), II (Li), III (Se), IV (Li + Se) treated with saline, lithium carbonate (2.7 mg Li/kg b.w.), sodium selenite (0.5 mg Se/kg b.w.) and lithium carbonate (2.7 mg Li/kg b.w.) + sodium selenite (0.5 mg Se/kg b.w.), respectively. All substances were administered as water solutions by stomach tube for 3 or 6 weeks. Catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GP x) as well as malonyldialdehyde (MDA) were determined in brain homogenates. Lithium slightly enhanced MDA and depressed CAT and SOD after 6 weeks as well as GPx after 3 weeks. Selenium co -administration show ed tendency to restore the disturbed parameters. Selenium alone and given with lithium significantly increased GPx vs. Li- treated group after 3 weeks. Having regarded the outcomes of this study, the research on application of selenium during lithium treatment seems to be worth continuation., M. Kiełczykowska, J. Kocot, A. Lewandowska, R. Żelazowska, I. Musik., and Obsahuje bibliografii
The aim of this study was to determine the effects of insulin infusion on oxidative stress induced by acute changes in glycemia in non-stressed hereditary hypertriglyceridemic rats (hHTG) and Wistar (control) rats. Rats were treated with glucose and either insulin or normal saline infusion for 3 hours followed by 90 min of hyperglycemic (12 mmol/l) and 90 min of euglycemic (6 mmol/l) clamp. Levels of total glutathione (GSH), oxidized glutathione (GSSG) and total antioxidant capacity (AOC) were determined to assess oxidative stress. In steady states of each clamp, glucose infusion rate (GIR) was calculated for evaluation of insulin sensitivity. GIR (mg.kg-1.min-1) was significantly lower in hHTG in comparison with Wistar rats; 25.46 (23.41 - 28.45) vs. 36.30 (27.49 - 50.42) on glycemia 6 mmol/l and 57.18 (50.78 - 60.63) vs. 68.00 (63.61 - 85.92) on glycemia 12 mmol/l. GSH/GSSG ratios were significantly higher in hHTG rats at basal conditions. Further results showed that, unlike in Wistar rats, insulin infusion significantly increases GSH/GSSG ratios in hHTG rats: 10.02 (9.90 - 11.42) vs. 6.01 (5.83 - 6.43) on glycemia 6 mmol/l and 7.42 (7.15 - 7.89) vs. 6.16 (5.74 - 7.05) on glycemia 12 mmol/l. Insulin infusion thus positively influences GSH/GSSG ratio and that way reduces intracellular oxidative stress in insulin-resistant animals., M. Žourek, P. Kyselová, J. Mudra, M. Krčma, Z. Jankovec, S. Lacigová, J. Víšek, Z. Rušavý., and Obsahuje bibliografii a bibliografické odkazy
L-arginine is a substrate for nitric oxide synthase (NOS) responsible for the production of NO. This investigation studied the effect of apocynin, an NADPH oxidase inhibitor and catalase, an H2O2 scavenger on L-arginine-induced oxidative stress and hypotension. Forty Wistar-Kyoto rats were treated for 14 days with vehicle, L-arginine (12.5 mg/ml p.o.), L-arginine + apocynin (2.5 mmol/l p.o.), L-arginine + catalase (10000 U/kg/day i.p.) and L-arginine plus apocynin + catalase respectively. Weekly renal functional and hemodynamic parameters were measured and kidneys harvested at the end of the study for histopathological and renal NADPH oxidase 4 (Nox4) assessments. L-arginine administration in normotensive rats decreased systolic blood pressure (120±2 vs. 91±2 mmHg) and heart rate (298±21 vs. 254±15 bpm), enhanced urinary output (21.5±4.2 vs. 32±1.9 ml/24 h, increased creatinine clearance (1.72±0.56 vs. 2.62±0.40 ml/min/kg), and fractional sodium excretion (0.88±0.16 vs. 1.18±0.16 %), caused proteinuria (28.10±1.93 vs. 35.26±1.69 mg/kg/day) and a significant decrease in renal cortical blood perfusion (292±3 vs. 258±5 bpu) and pulse wave velocity (3.72±0.20 vs 2.84±0.13 m/s) (all P<0.05). L-arginine increased plasma malondialdehyde (by ~206 % P<0.05) and NO (by ~51 %, P<0.05) but decreased superoxide dismutase (by ~31 %, P<0.05) and total antioxidant capacity (by ~35 %, P<0.05) compared to control. Renal Nox4 mRNA activity was approximately 2.1 fold higher (P<0.05) in the L-arginine-treated rats but was normalized by apocynin and apocynin plus catalase treatment. Administration of apocynin and catalase, but not catalase alone to rats fed L-arginine, restored the deranged renal function and structure, prevented hypotension and enhanced the antioxidant capacity and suppressed Nox4 expression. These findings suggest that apocynin and catalase might be used prophylactically in the states of oxidative stress.
Ferritin and increased iron stores first appea red on the list of cardiovascular risk factors more than 30 years ago and their causal role in the pathogenesis of atherosclerosis has been heavily discussed since the early 1990s. It seems that besides traditional factors such as hyperlipoprotein emia, hyp ertension, diabetes mellitus, obesity, physical inactivity, smoking and family history, high iron stores represent an additional parameter that could modify individual cardiovascular risk. The role of iron in the pathogenesis of atherosclerosis was origina lly primarily associated with its ability to cataly ze the formation of highly reactive free oxygen radicals and the oxidation of atherogenic lipoproteins. Later, it became clear that the mechanism is more complex. Atherosclerosis is a chronic fibroprolife rative inflammatory process and iron, through increased oxidation stress as well as directly, can control both native and adaptive immune responses. Within the arterial wall, iron affects all of the cell types that participate in the atherosclerotic proces s (monocytes/macrophages, endothelial cells, vascular smooth muscle cells and platelets). Most intracellular iron is bound in ferritin, whereas redox-active iron forms labile iron pool. Pro-inflammatory and anti-inflammatory macrophages within arterial plaque differ with regard to the amount of intracellular iron and most probably with regard to their labile iron pool. Yet, the relation between plasma ferritin and intracellular labile iro n pool has not been fully clarified. Data from population studies document that the consumption of meat and lack of physical activity contribute to increased iron stores. Patients with hereditary h emochromatosis, despite extreme iron storage, do not show i ncreased manifestation of atherosclerosis probably due to the low expression of hepcidin in macrophages., P. Kraml., and Obsahuje bibliografii
Reactive oxygen species are an important element of redox regulation in cells and tissues. During physiological processes, molecules undergo chemical changes caused by reduction and oxidation reactions. Free radicals are involved in interactions with other molecules, leading to oxidative stress. Oxidative stress works two ways depending on the levels of oxidizing agents and products. Excessive action of oxidizing agents damages biomolecules, while a moderate physiological level of oxidative stress (oxidative eustress) is necessary to control life processes through redox signaling required for normal cellular operation. High levels of reactive oxygen species (ROS) mediate pathological changes. Oxidative stress helps to regulate cellular phenotypes in physiological and pathological conditions. Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) transcription factor functions as a target nuclear receptor against oxidative stress and is a key factor in redox regulation in hypertension and cardiovascular disease. Nrf2 mediates transcriptional regulation of a variety of target genes. The Keap1-Nrf2-ARE system regulates many detoxification and antioxidant enzymes in cells after the exposure to reactive oxygen species and electrophiles. Activation of Nrf2/ARE signaling is differentially regulated during acute and chronic stress. and Keap1 normally maintains Nrf2 in the cytosol and stimulates its degradation through ubiquitination. During acute oxidative stress, oxidized molecules modify the interaction of Nrf2 and Keap1, when Nrf2 is released from the cytoplasm into the nucleus where it binds to the antioxidant response element (ARE). This triggers the expression of antioxidant and detoxification genes. The consequence of long-term chronic oxidative stress is activation of glycogen synthase kinase 3β (GSK-3β) inhibiting Nrf2 activity and function. PPARγ (peroxisome proliferator-activated receptor gamma) is a nuclear receptor playing an important role in the management of cardiovascular diseases, hypertension and metabolic syndrome. PPARγ targeting of genes with peroxisome proliferator response element (PPRE) has led to the identification of several genes involved in lipid metabolism or oxidative stress. PPARγ stimulation is triggered by endogenous and exogenous ligands – agonists and it is involved in the activation of several cellular signaling pathways involved in oxidative stress response, such as the PI3K/Akt/NOS pathway. Nrf2 and PPARγ are linked together with their several activators and Nrf2/ARE and PPARγ/PPRE pathways can control several types of diseases.
Cadmium is a heavy metal causing toxicity especially in kidney
cells. The toxicity is linked also with enhanced oxidative stress
leading to cell death. On the other hand, our recent experiments
have shown that an increase of total intracellular dehydrogenases
activity can also occur in kidney cells before declining until cell
death. The aim of the present study, therefore, was to evaluate
this transient enhancement in cell viability after cadmium
treatment. The human kidney HK-2 cell line was treated with
CdCl2 at concentrations 0-200 µM for 2-24 h and intracellular
dehydrogenase activity was tested. In addition, we measured
reactive oxygen species (ROS) production, glutathione levels,
mitochondrial membrane potential, and C-Jun-N-terminal kinase
(JNK) activation. We found that significantly increased
dehydrogenase activity could occur in cells treated with 25, 100,
and 200 µM CdCl2. Moreover, the results showed an increase in
ROS production linked with JNK activation following the
enhancement of dehydrogenase activity. Other tests detected
no relationship with the increased in intracellular dehydrogenase
activity. Hence, the transient increase in dehydrogenase activity
in HK-2 cells preceded the enhancement of ROS production and
our finding provides new evidence in cadmium kidney toxicity.
A crop legume Vigna unguiculata L. (Walp.) and a wild legume Crotalaria juncea L. were evaluated for their relative responses to the oxidative stress injury induced by various doses of UV-B radiation (UV-B, 280-315 nm; 0, 1.0, 1.4, 4.7, and 6.0 kJ m-2 d-1). A dose-dependent damage in lipid peroxidation was determined as an index of membrane injury caused by UV-B. The impact was significantly higher in V. unguiculata than in C. juncea. The specific activities of superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase increased directly proportional to UV-B doses. However, the activities of these enzymes were significantly higher in V. unguiculata than in C. juncea indicating that V. unguiculata was inflicted with more severe oxidative stress injury under UV-B. In C. juncea the glutathione reductase and ascorbate oxidase activities were 35 and 40 % greater than in V. unguiculata, respectively. Further, the non-enzymatic antioxidants ascorbate and glutathione, and their reduced/oxidizes ratios in C. juncea were much greater than V. unguiculata indicating C. juncea has an inherently greater antioxidative potential than V. unguiculata. Thus C. juncea is better adapted to oxidative stress than V. unguiculata by means of efficient cellular antioxidant mechanisms helping to combat the photooxidative stress injury elicited by UV-B.