Our study compared total C-peptide secretion after administration of whey proteins and whey proteins in combination with glucose with results of classical tests assessing beta cell function in the pancreas of healthy individuals. Eight young, healthy (7 males, 1 female; aged 20-26 years), nonobese (BMI: 17-25.9 kg/m2 ) participants with normal glucose tolerance underwent six C-peptide secretion tests. Three secretion tests measured C-peptide response to orally administered substances: whey proteins only (OWT), whey proteins with glucose (OWGT) and glucose only (OGTT); while three secretion tests measured C-peptide response to intravenously administered substances: arginine (AST), glucagon (GST) and glucose (IVGTT). OWT stimulated a greater (93 %, p<0.05) C-peptide response than AST and a 64 % smaller response (p<0.05) than OGTT. OWT also showed lower variability (p<0.05) in C-peptide responses compared to OWGT and OGTT. The greatest total C-peptide response was induced by OWGT (36 % higher than glucose). OWT consistently increased C-peptide concentrations with lower individual variability, while insignificantly increasing glucose levels. Results of this study suggest that both dietology and beta-cells capacity testing could take advantage of the unique property of whey proteins to induce C-peptide secretion., E. Wildová, ... [et al.]., and Obsahuje seznam literatury
Ferritin and increased iron stores first appea red on the list of cardiovascular risk factors more than 30 years ago and their causal role in the pathogenesis of atherosclerosis has been heavily discussed since the early 1990s. It seems that besides traditional factors such as hyperlipoprotein emia, hyp ertension, diabetes mellitus, obesity, physical inactivity, smoking and family history, high iron stores represent an additional parameter that could modify individual cardiovascular risk. The role of iron in the pathogenesis of atherosclerosis was origina lly primarily associated with its ability to cataly ze the formation of highly reactive free oxygen radicals and the oxidation of atherogenic lipoproteins. Later, it became clear that the mechanism is more complex. Atherosclerosis is a chronic fibroprolife rative inflammatory process and iron, through increased oxidation stress as well as directly, can control both native and adaptive immune responses. Within the arterial wall, iron affects all of the cell types that participate in the atherosclerotic proces s (monocytes/macrophages, endothelial cells, vascular smooth muscle cells and platelets). Most intracellular iron is bound in ferritin, whereas redox-active iron forms labile iron pool. Pro-inflammatory and anti-inflammatory macrophages within arterial plaque differ with regard to the amount of intracellular iron and most probably with regard to their labile iron pool. Yet, the relation between plasma ferritin and intracellular labile iro n pool has not been fully clarified. Data from population studies document that the consumption of meat and lack of physical activity contribute to increased iron stores. Patients with hereditary h emochromatosis, despite extreme iron storage, do not show i ncreased manifestation of atherosclerosis probably due to the low expression of hepcidin in macrophages., P. Kraml., and Obsahuje bibliografii