The consequences of epileptic seizures related to postictal inhibition in early postictal period include postictal analgesia. We studied this phenomenon over 96 h following flurothyl-induced seizures in adult male Wistar rats. Nociception of control (no seizure) and seizured groups were tested using the plantar and von Frey hair tests. We determined latency of forepaw and hind paw reactions using plantar tests and the number of von Frey hairs reactions. Shortly after seizures, longer plantar test latencies were seen relative to the control group. Before the seizures the plantar test reaction times were significantly shorter in forepaws than in hind paws. The effect disappeared post-seizure and surprisingly, it also disappeared at the corresponding time in controls; it reappeared after 48 h in the seizure group and after 24 h in controls. Differences in the von Frey hairs test occurred at 5 and 60 min post-seizure, however, these differences could not be explained by limb anatomy; although, different thermal and mechanical nociception mechanisms could be significant. The unexpected reactions in controls could be related to brief social and physical interactions between the two groups. and J. Mareš, R. Rokyta.
Nociceptors belong to Ad and C afferents that are equipped in the periphery with receptors for detecting potentially damaging physical and chemical stimuli. This review summarizes experimental evidence that these receptors represented by ionic channels are also functionally expressed on the cell bodies of sensory neurones in short-term cultures. The nociceptors belong predominantly to the small and medium size DRG neurones in which algogens such as weak acids, capsaicin, bradykinin and serotonin produce inward currents that can generate impulse activity. It seems likely that the neurones which are not sensitive to algogens but to GABA, ATP or glutamate, agents not producing pain in humans, belong to other categories of DRG neurones equipped for detecting other modalities of sensation. New techniques for physical stimulation of DRG neurones in culture may be of great help in the search for complementing the criteria for distinguishing nociceptors among other neurones in culture. It is suggested that such an in vitro model will be useful for studying cellular mechanisms of nociception.
Acute orofacial pain is associated with significant disability and has a detrimental impact on quality of life. Although various origins of the pain in trigeminal territory can be identified an odontogenic pathology is the most common cause of acute orofacial pain in patients. Due to complex pathophysiology drugs with multitarget action might provide beneficial effect in pain management. The aim of the present study was to experimentally examine the anti-nociceptive effects of tapentadol, an opioid agonist and a norepinephrine reuptake inhibitor (MOR/NRI), in our animal model of orofacial pain. We tested the effect of tapentadol at gradual doses of 1, 2 and 5 mg/kg during thermal and mechanical stimulation in the trigeminal area of adult rats. We observed that tapentadol exhibits antinociceptive effect at dosages of 2 mg/kg and 5 mg/kg and only in association with mechanical stimulation.
Gain-of-function (GOF) mutations in ion channels are rare events, which lead to increased agonist sensitivity or altered gating properties, and may render the channel constitutively active. Uncovering and following characterization of such mutants contribute substantially to the understanding of the molecular basis of ion channel functioning. Here we give an overview of some GOF mutants in polymodal ion channels specifically involved in transduction of painful stimuli - TRPV1 and TRPA1, which are scrutinized by scientists due to their important role in development of some pathological pain states. Remarkably, a substitution of single amino acid in the S4-S5 region of TRPA1 (N855S) has been recently associat ed with familial episodic pain syndrome. This mutation increases chemical sensitivity of TRPA1, but leaves the voltage sensitivit y unchanged. On the other hand, mutations in the analogous regi on of TRPV1 (R557K and G563S) severely affect all aspects of channel activation and lead to spontaneous activity. Comparison of the effects induced by mutations in homologous positions in different TRP receptors (or more generally in other distan tly related ion channels) may elucidate the gating mechanisms conserved during evolution., S. Boukalova ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The activities of 39 single cells, located in the ventroposterior nucleus of the rat thalamus, were recorded from rats deeply anaesthetized with xylazine and ketamine. The activity of each neurone was recorded before and during noxious tail heating. In all, 17 neurones were excited, 11 were inhibited, and 11 were not affected by the noxious stimulation. The possible function of each type of response in the coding of nociceptive information is discussed.
Surgical Plethysmographic Index (SPI), calculated from pulse photo-plethysmographic amplitude oscillations, has been proposed as a tool to measure nociception anti-nociception balance during general anesthesia, but it is affected by several confounding factor that alter the autonomic nervous system (ANS) modulation. We hypothesized that SPI may be mainly affected by sympathetic stimulation independently from nociception. We studied the effects of two sympathetic stimuli on SPI, delivered through passive head-up tilt at 45 and 90 degrees angles, in nine awake healthy adults. The sympathetic modulation was assessed by means of heart rate variability (HRV) analysis. Mean (SD) SPI significantly increased from baseline to 45 degrees [from 38.6 (13.7) to 60.8 (7.6), p<0.001)] and to 90 degrees angle tilt [82.3 (5.4), p<0.001]. The electrocardiographic mean R-to-R interval significantly shortened during both passive tilts, whereas systolic arterial pressure did not change during the study protocol. HRV changed significantly during the study protocol towards a predominance of sympathetic modulation during passive tilt. Gravitational sympathetic stimulation at two increasing angles, in absence of any painful stimuli, affects SPI in awake healthy volunteers. SPI seems to reflect the sympathetic outflow directed to peripheral vessels., R. Colombo, A. Marchi, B. Borghi, T. Fossali, E. Tobaldini, S. Guzzetti, F. Raimondi., and Obsahuje bibliografii
Transient receptor potential A1 (TRPA1) is an excitatory ion channel that functions as a cellular sensor, detecting a wide range of proalgesic agents such as environmental irritants an d endogenous products of inflammation and oxidative stress. Topical application of TRPA1 agonists produces an acute nociceptive response through peripheral release of neuropeptides, purines and other transmitters from activated sensory nerve endings. This, in turn, further regulates TRPA1 activity downstream of G-protein and phospholipase C -coupled signaling cascades. Despite the important physiological relevance of such regulation leading to nociceptor sensitization and consequent pain hypersensitivity, th e specific domains through which TRPA1 undergoes post -translational modifications that affect its activation properties are yet to be determined at a molecular level. This review aims at providing an account of our current knowledge on molecular basis of r egulation by neuronal inflammatory signaling pathways that converge on the TRPA1 channel protein and through modification of its specific residues influence the extent to which this channel may contribute to pain., A. Kádková, V. Synytsya, J. Krusek, L. Zímová, V. Vlachová., and Obsahuje bibliografii
Previous results have suggested that orexins causes a rise of intracellular free calcium ([Ca2+]i) in cultured rat dorsal root ganglion (DRG) neurons, implicating a role in nociception, but the underlying mechanism is unknown. Hence, the aim of the present study was to investigate whether the orexins-mediated signaling involves the PKC pathways in these sensory neurons. Cultured DRG neurons were loaded with 1 μmol Fura-2 AM and [Ca2+]i responses were quantified by the changes in 340/380 ratio using fluorescence imaging system. The orexin-1 receptor antagonist SB-334867-A (1 μM) inhibited the calcium responses to orexin-A and orexin-B (59.1±5.1 % vs. 200 nM orexin-A, n=8, and 67±3.8 % vs. 200 nM orexin-B, n=12, respectively). The PKC inhibitor chelerythrine (10 and 100 μM) significantly decreased the orexin-A (200 nM)-induced [Ca2+]i increase (59.4±4.8 % P<0.01, n=10 and 4.9±1.6 %, P<0.01, n=9) versus response to orexin-A). It was also found that chelerythrine dose-dependently inhibited the [Ca2+]i response to 200 nM orexin-B. In conclusion, our results suggest that orexins activate intracellular calcium signaling in cultured rat sensory neurons through PKC-dependent pathway, which may have important implications for nociceptive modulation and pain., M. Ozcan ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
This review, which summarizes our findings concerning the long-term effects of pre-, peri- and postnatal factors affecting development, nociception and sensorimotor functions, focuses on three areas: 1) perinatal factors influencing nociception in adult rats were examined in rats with hippocampal lesions, after the administration of stress influencing and psychostimulant drugs (dexamethasone, indomethacine and methamphetamine); 2) the effect of pre- and early postnatal methamphetamine administration was shown to impair the development of sensorimotor functions tested in rat pups throughout the preweaning period; 3) the effect of extensive dorsal rhizotomy of the brachial plexus during the early postnatal period was studied with respect to neuropathic pain development and sensorimotor functions. The present study indicates that prenatal or neonatal stress, as well as various drugs, may disturb the development of the nociceptive system and cause long-term behavioral changes persisting to adulthood and that some types of neuropathic pain cannot be induced during the first two postnatal weeks at all. A mature nervous system is required for the development of the described pathological behaviors., R. Rokyta, A. Yamamotová, R. Šlamberová, M. Franěk, Š. Vaculín, L. Hrubá, B. Schutová, M. Pometlová., and Obsahuje bibliografii a bibliografické odkazy
Protease-activated receptors (PARs) belong to the G-proteincoupled receptor family, that are expressed in many body tissues especially in different epithelial cells, mast cells and also in neurons and astrocytes. PARs play different physiological roles according to the location of their expression. Increased evidence supports the importance of PARs activation during nociceptive signaling and in the development of chronic pain states. This short review focuses on the role of PAR2 receptors in nociceptive transmission with the emphasis on the modulation at the spinal cord level. PAR2 are cleaved and subsequently activated by endogenous proteases such as tryptase and trypsin. In vivo, peripheral and intrathecal administration of PAR2 agonists induces thermal and mechanical hypersensitivity that is thought to be mediated by PAR2-induced release of pronociceptive neuropeptides and modulation of different receptors. PAR2 activation leads also to sensitization of transient receptor potential channels (TRP) that are crucial for nociceptive signaling and modulation. PAR2 receptors may play an important modulatory role in the development and maintenance of different pathological pain states and could represent a potential target for new analgesic treatments., P. Mrozkova, J. Palecek, D. Spicarova., and Obsahuje bibliografii