The rationale for the topical application of capsaicin and other vanilloids in the treatment of pain is that such compounds selectively excite and subsequently desensitize nociceptive neurons. This desensitization is triggered by the activation of vanilloid receptors (TRPV1), which leads to an elevation in intracellular free Ca2+ levels. Depending on the vanilloid concentration and duration of exposure, the Ca2+ influx via TRPV1 desensitizes the channels themselves, which may represent not only a feedback mechanism protecting the cell from toxic Ca2+ overload, but also likely contributes to the analgesic effects of capsaicin. This review summarizes the current state of knowledge concerning the mechanisms that underlie the acute capsaicin-induced Ca2+-dependent desensitization of TRPV1 channels and explores to what extent they may contribute to capsaicin-induced analgesia. In view of the polymodal nature of TRPV1, we illustrate how the channels behave in their desensitized state when activated by other stimuli such as noxious heat or depolarizing voltages. We also show that the desensitized channel can be strongly reactivated by capsaicin at concentrations higher than those previously used to desensitize it. We provide a possible explanation for a high incidence of adverse effects of topical capsaicin and point to a need for more accurate clinical criteria for employing it as a reliable remedy., L. Vyklický, K. Nováková-Toušová, J. Benedikt, A. Samad, F. Touška, V. Vlachová., and Obsahuje bibliografii a bibliografické odkazy
Gain-of-function (GOF) mutations in ion channels are rare events, which lead to increased agonist sensitivity or altered gating properties, and may render the channel constitutively active. Uncovering and following characterization of such mutants contribute substantially to the understanding of the molecular basis of ion channel functioning. Here we give an overview of some GOF mutants in polymodal ion channels specifically involved in transduction of painful stimuli - TRPV1 and TRPA1, which are scrutinized by scientists due to their important role in development of some pathological pain states. Remarkably, a substitution of single amino acid in the S4-S5 region of TRPA1 (N855S) has been recently associat ed with familial episodic pain syndrome. This mutation increases chemical sensitivity of TRPA1, but leaves the voltage sensitivit y unchanged. On the other hand, mutations in the analogous regi on of TRPV1 (R557K and G563S) severely affect all aspects of channel activation and lead to spontaneous activity. Comparison of the effects induced by mutations in homologous positions in different TRP receptors (or more generally in other distan tly related ion channels) may elucidate the gating mechanisms conserved during evolution., S. Boukalova ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The effect of suramin, an inhibitor of G protein regulated signalling, was studied on the membrane currents induced by noxious heat and by capsaicin in cultured dorsal root ganglia neurones isolated from neonatal rats. Whole-cell responses induced by a heat ramp (24-52 °C) were little affected by suramin. The noxious heat-activated currents were synergistically facilitated in the presence of 0.3 µM capsaicin 13.2-fold and 6.3-fold at 40 °C and 50 °C, respectively. In 65% of neurones, the capsaicin-induced facilitation was inhibited by 10 µM suramin to 35±6 % and 53±6 % of control at 40 °C and 50 °C (S.E.M., n=15). Suramin 30 µM caused a significant increase in the membrane current produced by a nearly maximal dose (1 µM) of capsaicin over the whole recorded temperature range (2.4-fold at 25 °C and 1.2-fold at 48 °C). The results demonstrate that suramin differentially affects the interaction between capsaicin and noxious heat in DRG neurones and thus suggest that distinct transduction pathways may participate in vanilloid receptor activation mechanisms., V. Vlachová, A. Lyfenko, L. Vyklický, † R.K. Orkand., and Obsahuje bibliografii