Gain-of-function (GOF) mutations in ion channels are rare events, which lead to increased agonist sensitivity or altered gating properties, and may render the channel constitutively active. Uncovering and following characterization of such mutants contribute substantially to the understanding of the molecular basis of ion channel functioning. Here we give an overview of some GOF mutants in polymodal ion channels specifically involved in transduction of painful stimuli - TRPV1 and TRPA1, which are scrutinized by scientists due to their important role in development of some pathological pain states. Remarkably, a substitution of single amino acid in the S4-S5 region of TRPA1 (N855S) has been recently associat ed with familial episodic pain syndrome. This mutation increases chemical sensitivity of TRPA1, but leaves the voltage sensitivit y unchanged. On the other hand, mutations in the analogous regi on of TRPV1 (R557K and G563S) severely affect all aspects of channel activation and lead to spontaneous activity. Comparison of the effects induced by mutations in homologous positions in different TRP receptors (or more generally in other distan tly related ion channels) may elucidate the gating mechanisms conserved during evolution., S. Boukalova ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The issue of plasma triglyceride levels relative to the risk of development of cardiovascular disease, as well as overall mortality, has been actively discussed for many years. Like other cardiovascular disease risk factors, final plasma TG values have environmental influences (primarily dietary habits, physical activity, and smoking), and a genetic predisposition. Rare mutations (mainly in the lipoprotein lipase and apolipoprotein C2) along with common polymorph isms (within apolipoprotein A5, glucokinase regulatory protein, apolipoprotein B, apolipo - protein E, cAMP responsive element binding protein 3 -like 3 , glycosylphosphatidylinositol- anchored HDL -binding protein 1) play an important role in determining plasma TG levels., L. Schwarzova, J. A. Hubacek, M. Vrablik., and Obsahuje bibliografii
Glutamate is the main excitatory neurotransmitter in the brain and ionotropic glutamate receptors mediate the majority of excitatory neurotransmission (Dingeldine et al. 1999). The high level of glutamatergic excitation allows the neonatal brain (the 2 nd postnatal week in rat) to develop quickly but it also makes it highly prone to age-specific seizures that can cause lifelong neurological and cognit ive disability (Haut et al. 2004). There are three types of ionotropic glutamate receptors (ligand-gated ion channels) named according to their prototypic agonists: N- methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) and kainate (KA). During early stages of postnatal development glutamate receptors of NMDA and AMPA type undergo intensive functional changes owing to modifications in their subunit composition (Carter et al. 1988, Watanabe et al. 1992, Monyer et al. 1994, Wenzel et al. 1997, Sun et al. 1998, Lilliu et al. 2001, Kumar et al. 2002, Matsuda et al. 2002, Wee et al. 2008, Henson et al. 2010, Pachernegg et al. 2012, Paoletti et al. 2013). Participation and role of these receptors in mechanisms of seizures and epilepsy became one of the main targets of intensive investigation (De Sarro et al. 2005, Di Maio et al. 2012, Rektor 2013). LiCl/Pilocarpine (LiCl/Pilo) induced status epilepticus is a model of severe seizures resulting in development temporal lobe epilepsy (TLE). This review will consider developmental changes and contribution of NMDA and AMPA receptors in LiCl/Pilo model of status epilepticus in immature rats., E. Szczurowska, P. Mareš., and Obsahuje bibliografii a bibliografické odkazy
Glucokinase (GCK) plays a key role in glucose metabolism. GCK mutations are known as a pathogenic cause of maturity-onset diabetes of the young type 2 (MODY2). These mutations are also found in gestational diabetics. The aim of our study was to assess the variability of the GCK gene in the Czech diabetic and control populations. We screened all 10 exons specific for the pancreatic isoform of glucokin ase (1a and 2-10) including the intron flanking regions in 722 subjects (in 12 patients with an unrecognised type of MODY and their 10 family members, 313 patients with diabetes mellitus type 2 (DM2), 141 gestational diabetics (GDM), 130 healthy offspring of diabetic parents, and 116 healthy controls without family history of DM2). In two MODY families we identified two mutations in exon 2 of the GCK gene: a novel mutation Val33Ala and the previously described mutation Glu40Lys. In other subgroups (excluding MODY families) we detected only intronic variants and previously described polymorphisms in exons 6 (Tyr215Tyr) and 7 (Ser263Ser), we did not find any known GCK pathogenic mutation. We observed no difference in the frequencies of GCK polymorphisms between Czech diabetic (DM2, GDM) and non- diabetic populations., P. Lukášová, J. Včelák, M. Vaňková, D. Vejražková, K. Andělová, B. Bendlová., and Obsahuje bibliografii a bibliografické odkazy