Mitochondria are considered central regulator of the aging process; however, majority of studies dealing with the impact of age on mitochondrial oxygen consumption focused on skeletal muscle concluding (although not uniformly) a general declining trend with advancing age. In addition, gender related differences in mitochondrial respiration have not been satisfactorily described yet. The aim of the present study was to evaluate mitochondrial oxygen consumption in various organs of aging male and female Fischer 344 rats at the ages of 6, 12 and 24 months. Mitochondrial respiration of homogenized (skeletal muscle, left and right heart ventricle, hippocampus, cerebellum, kidney cortex), gently mechanically permeabilized (liver) tissue or intact cells (platelets) was determined using high-resolution respirometry (oxygraphs O2k, Oroboros, Austria). The pattern of age-related changes differed in each tissue: in the skeletal muscle and kidney cortex of both sexes and in female heart, parameters of mitochondrial respiration significantly declined with age. Resting respiration of intact platelets displayed an increasing trend and it did not correlate with skeletal muscle respiratory states. In the heart of male rats and brain tissues of both sexes, respiratory states remained relatively stable over analyzed age categories with few exceptions of lower mitochondrial oxygen consumption at the age of 24 months. In the liver, OXPHOS capacity was higher in females than in males with either no difference between the ages of 6 and 24 months or even significant increase at the age of 24 months in the male rats. In conclusion, the results of our study indicate that the concept of general pattern of age-dependent decline in mitochondrial oxygen consumption across different organs and tissues could be misleading. Also, the statement of higher mitochondrial respiration in females seems to be conflicting, since the genderrelated differences may vary with the tissue studied, combination of substrates used and might be better detectable at younger ages than in old animals.
Five-sixths nephrectomy is a widely used experimental model of chronic kidney disease (CKD) that is associated with severe mitochondrial dysfunction of the remnant tissue. In this study, we assessed the effect of CKD on mitochondrial respiration separately in the rat kidney cortex and medulla 10 weeks after induction of CKD by subtotal 5/6 nephrectomy (SNX). Mitochondrial oxygen consumption was evaluated on mechanically permeabilized samples of kidney cortex and medulla using high-resolution respirometry and expressed per mg of tissue wet weight or IU citrate synthase (CS) activity. Mitochondrial respiration in the renal cortex of SNX rats was significantly reduced in all measured respiratory states if expressed per unit wet weight and remained lower if recalculated per IU citrate synthase activity, i.e. per mitochondrial mass. In contrast, the profound decrease in the activity of CS in SNX medulla resulted in significantly elevated respiratory states expressing the OXPHOS capacity when Complexes I and II or II only are provided with electrons, LEAK respiration after oligomycin injection, and Complex IV-linked oxygen consumption per unit CS activity suggesting compensatory hypermetabolic state in remaining functional mitochondria that is not sufficient to fully compensate for respiratory deficit expressed per tissue mass. The results document that CKD induced by 5/6 nephrectomy in the rat is likely to cause not only mitochondrial respiratory dysfunction (in the kidney cortex), but also adaptive changes in the medulla that tend to at least partially compensate for mitochondria loss.
The objective of the present study was to evaluate platelet mitochondrial oxygen consumption using high-resolution respirometry (HRR) and metabolic flux analysis (MFA) and to verify the effect of advanced age on these parameters. HRR was used to analyze permeabilized and intact platelets, MFA to measure oxygen consumption rates (OCR), extracellular acidification rates (ECAR) and ATP production rate in intact fixed platelets. Two groups of healthy volunteers were included in the study: YOUNG (20-42 years, n=44) and older adults (OLD; 70-89 years; n=15). Compared to YOUNG donors, platelets from group OLD participants displayed significantly lower values of oxygen consumption in the Complex II-linked phosphorylating and uncoupled states and the Complex IV activity in HRR protocols for permeabilized cells and significantly lower resting and uncoupled respirations in intact cells when analyzed by both methods. In addition, mitochondrial ATP production rate was also significantly lower in platelets isolated from older adults. Variables measured by both methods from the same bloods correlated significantly, nevertheless those acquired by MFA were higher than those measured using HRR. In conclusion, the study verifies compromised mitochondrial respiration and oxidative ATP production in the platelets of aged persons and documents good compatibility of the two most widely used methods for determining the global performance of the electron-transporting system, i.e. HRR and MFA