We compared the photosynthetic traits in response to soil water availability in an endangered plant species Mosla hangchowensis Matsuda and in a weed Mosla dianthera (Buch.-Ham.) Maxim. The highest diurnal mean net photosynthetic rate (PNmean), stomatal conductance (gs), and water use efficiency (WUE) of both species occurred at 60 % soil water holding capacity (WHC), while the lowest values occurred at 20 % WHC. The PNmean, gs, and chlorophyll (Chl) a and b contents of M. hangchowensis were lower than those of M. dianthera, while the physiological plasticity indices were higher than those of M. dianthera. M. hangchowensis had strong adaptability to the changing soil water status but weak extending population ability in its habitats because of the low PNmean, which may be one of the causes of its endangerment. and Y. Ge ... [et al.].
We investigated the physiological and biochemical differences in Pterocarpus indicus and Erythrina orientalis grown in four sites at different pollution levels in the Philippines: Makati, Pasig and Quezon (high pollution levels; HP) located in Metro Manila, and La Mesa Watershed (a non-polluted area; NP). Among these four areas, HP sites had higher net photosynthetic rates (PN) than NP sites, except for Makati. Among HP sites, Makati and Quezon had the lowest PN for P. indicus and E. orientalis, respectively. Chlorophyll (Chl) contents were significantly lower in HP than in NP sites. Trees in Makati had the lowest Chl contents among HP sites, and P. indicus had higher Chl contents than did E. orientalis. In addition, the chloroplasts in HP trees had small starch grains with numerous dark, large plastoglobuli. Furthermore, antioxidant enzymes, indicative of the defense mechanism, showed a significantly higher activity in HP than in NP trees. and S. G. Baek, S. Y. Woo.
Significant differences in net photosynthetic rate (PN) of leaves between two maize (Zea mays L.) strains (Shuang 105 and 40×44) grown in the field were observed. At several growth stages, PN of 40×44 was higher than that of Shuang 105 (from 10.3 to 32.5 %). Moreover, the strain 40×44 had a higher plant height, larger leaf area, lower chlorophyll content, and higher photochemical efficiency of photosystem 2 (PS2) (Fv/Fm and ΔF/Fm') than strain Shuang 105. Shuang 105, which showed lower PN, had lower stomatal conductances (gs) but slightly higher intercellular CO2 concentrations (Ci) than those of 40×44. Hence the differences in
PN between the two strains did not result from the difference in gs, but probably from that in light reaction system. and Hua Jiang, Da-Quan Xu.
Glaucium flavum is a biennial plant that bears a rosette of leaves, producing a flower stalk, bracteate monochasium, in its second year. The aims of this work were both to investigate the contribution of bracts to gas-exchange activities in this species and to compare this contribution to that of rosette leaves. In addition, we investigated the extent to which its responses can be explained by chloroplast ultrastructure, as well as the possible role of nutrient concentrations in the physiological responses of both leaf types. Gas exchange and plant characteristics regarding chlorophyll fluorescence were examined in a field experiment; we also determined leaf relative water content, tissue concentrations of photosynthetic pigments, chloroplast ultrastructure and nutrient contents. Although bracts indeed contributed to gas-exchange activities of G. flavum, rosette leaves showed higher values of net photosynthetic rate and stomatal conductance to CO2 for photosynthetic photon flux density above 200 μmol m-2 s-1. The incongruities in photosynthetic rates between bracts and leaves may be explained by the bigger chloroplasts of rosette leaves, which results in a larger membrane surface area. This agrees with the higher pigment concentrations and quantum efficiency of photosystem II values recorded as well for rosette leaves. On the other hand, bracts showed higher sodium concentrations, which could be a mechanism for salt tolerance of G. flavum. and S. Redondo-Gómez, E. Mateos-Naranjo, F. J. Moreno.
a1_The halophytic C4 grass, Aeluropus littoralis, was cultivated under low (50 mM) and high (200 mM) NaCl salinity and inoculated with the arbuscular mycorrhizal fungi (AMF) Claroideoglomus etunicatum in a sand culture medium for 20 weeks. Shoot and root dry mass increased under salinity conditions up to 24 and 86%, respectively. Although the root colonization rate significantly decreased in the presence of salt, AMF-colonized (+AMF) plants had higher biomass compared with plants without AMF colonization (-AMF) only under saline conditions. Net CO2 assimilation rate increased significantly by both salinity levels despite stable stomatal opening. In contrast, AMF-mediated elevation of the net CO2 assimilation rate was associated with a higher stomatal conductance. Unexpectedly, leaf activity of phosphoenolpyruvate carboxylase decreased by salinity and AMF colonization. Transpiration rate was not affected by treatments resulting in higher water-use efficiency under salinity and AMF conditions. Concentrations of soluble sugars and free α-amino acids increased by both salinity and AMF treatments in the shoot but not in the roots. Proline concentration in the leaves was higher in the salt-treated plants, but AMF colonization did not affect it significantly. Leaf activity of nitrate reductase increased by both salinity and AMF treatments. Mycorrhizal plants had significantly higher Na+ and K+ uptake, while Ca2+ uptake was not affected by salt or AMF colonization. The ratio of K+/Na+ increased by AMF in the shoot while it decreased in the roots. Leaf osmotic potential was lowered under salinity in both +AMF and -AMF plants. Our results indicated that higher dry matter production in the presence of salt and AMF could be attributed to higher CO2 and nitrate assimilation rates in the leaves., a2_Higher leaf accumulation of soluble sugars and α-amino acids but not proline and elevated water-use efficiency were associated with the improved growth of A. littoralis inoculated with AMF., R. Hajiboland, F. Dashtebani, N. Aliasgharzad., and Obsahuje seznam literatury
In this study, the JIP test was used to assess the drought tolerance of two sweet cherry cultivars (Prunus avium L.) (modern and autochthonous). Plants were exposed to progressive drought by withholding water and their fast (< 1 s) chlorophyll fluorescence kinetics was evaluated. JIP test analysis showed that drought stress caused a greater decrease in performance indices (PIABS and PItotal) in a modern cultivar, as compared to an autochthonous one. Our results suggest that limited reoxidation of primary quinone electron acceptor (QA), higher amount of secondary quinone electron acceptor (QB-) nonreducing reaction centres, or inhibition of the electron transport between QA and QB, decreased more seriously the photosynthetic performance of the modern cultivar. Further, higher positive L- and K-bands observed for the modern cultivar also suggest lower energetic connectivity between PSII units and increased inhibition of oxygen-evolving complex over autochthonous cultivar. Our results suggest that the autochthonous cultivar Crveni hrušt had better photosynthetic performance under drought conditions, compared to the modern cultivar New Star.
Groups of Actinidia deliciosa A. Chev. C.F. Liang et A.R. Ferguson var. deliciosa kiwifruit plants were subjected to soil water shortage (D), while other groups were well irrigated (I). Variations in chlorophyll (Chl) a fluorescence indices and leaf gas exchange were determined once plants were severely stressed (25 d after the beginning of the D-cycle). Daily maximum values of photosynthetic photon flux density (PPFD) were ca. 1 650 µmol(photon) m-2 s-1, while air temperatures peaked at 34.6 °C. High irradiance per se did not greatly affect the efficiency of photosystem (PS) 2, but predisposed its synergistic reduction by D co-occurrence. Fluorescence showed transient photodamage of PS2 with a complete recovery in the afternoon in both D and I plants. Upon re-watering the efficiency of PS2 was suboptimal (95 %) at day 2 after irrigation was reinitiated. At early morning of the day 5 of re-watering, photosynthesis and stomatal conductance recovered at about 95 and 80 % of I vines, respectively, indicating some after-stress effect on stomatal aperture. Once excessive photons reached PS2, the thermal dissipation of surplus excitation energy was the main strategy to save the photosynthetic apparatus and to optimize carbon fixation. The rather prompt recovery of both Chl a fluorescence indices and net photosynthetic rate during re-watering indicated that kiwifruit photosynthetic apparatus is prepared to cope with temporary water shortage under Mediterranean-type-climates. and G. Montanaro, B. Dichio, C. Xiloyannis.
Chlorophyll a fluorescence kinetics, net photosynthetic rate (PN), water relations, and photosynthetic pigment contents were studied during acclimation of in vitro grown tobacco to higher irradiance (HL; 700 μmol m-2 s-1). Plantlets were grown on medium containing sucrose in glass vessels (G-plants) or in Magenta boxes (M-plants) with better CO2 supply in the latter ones. The effect of HL was studied either (1) in plantlets grown under original in vitro conditions (closed vessels), (2) in in vitro plantlets exposed to ambient CO2 concentration (covers removed), or (3) in plantlets transplanted to ex vitro into pots with sand and nutrient solution. Higher PN, and fraction of closed photosystem 2 (PS2) centres (1 - qP), and lower content of xanthophyll cycle pigments were found in M-plants compared to G-plants. HL treatment caused photoinhibition particularly in plants kept in closed vessels. This was indicated by the decrease in the ratio of Fv/Fm and by the increase in non-photochemical quenching, 1 - qp, and content of xanthophyll cycle pigments. Better CO2 supply ensured by the removal of closure lead to the moderate reduction of symptoms of photoinhibition, although stomatal conductance (gs), transpiration rate (E), and PN were negatively affected. The main reason was the decrease in relative air humidity, which caused similar reduction of PN, E, and gs after the transfer of plantlets to ex vitro. Nevertheless, plant response to HL seemed not to be affected by any possible root injury caused by transfer to ex vitro. The differences in contents of xanthophyll cycle pigments, degree of de-epoxidation, PN, and quenching parameters between M- and G-plantlets were still significant 7 d after ex vitro transfer and HL acclimation. and Š. Semorádová, H. Synková, J. Pospíšilová.
Three genetically related Spathiphyllum cultivars, Claudia, Double Take, and Petite with similar initial sizes and biomass, were grown in a shaded greenhouse and fertilized with a constant supply of nitrogen at 200 g m-3 using an ebb-and-flow fertigation system. Seven months later, Claudia and Double Take had plant sizes and biomasses significantly greater than Petite. Stomatal conductances of Claudia and Double Take were 30 % greater, thus net photosynthetic rates (PN) were significantly higher than in Petite. In addition, the leaf areas (LA) of Claudia and Double Take were 60 % larger than of Petite. Since PN was expressed per leaf surface area, the greater the LA was, the more CO2 was fixed. Thus, the differences in plant size and biomass production of Claudia and Double Take compared to Petite are attributed to high PN and increased LA. and Qibing Wang, Jianjun Chen.