The impact of grazing by domestic goats, Capra hircus, on the photochemical apparatus of three co-ocurring Mediterranean shrubs, Erica scoparia, Halimium halimifolium, and Myrtus communis was evaluated. Seasonal course of gas exchange, chlorophyll fluorescence and photosynthetic pigment concentrations were measured in the field in grazed and ungrazed plants. Net photosynthetic rate was higher in grazed plants of E. scoparia and H. halimifolium in May, while there were not significant differences in M. communis. Photosynthetic enhancement in grazed plants of E. scoparia could be explained largely by higher stomatal conductance. On the other hand, the lack of differences in stomatal conductance between grazed and ungrazed plants of
H. halimifolium could indicate that carboxylation efficiency, and ribulose-1,5-bisphosphate (RuBP) regeneration may have been enhanced by grazing. Overall grazing has little effect on the photochemical (PSII) apparatus, however grazed plants of M. communis showed chronic photoinhibition in the short term. Finally, seasonal variations recorded on photosynthesis, photochemical efficiency and pigment concentrations may be a physiological consequence of environmental factors, such as summer drought and competition for light, rather than an adaptation to grazing. and S. Redondo-Gómez ... [et al.].
Chlorophyll fluorescence measurements showed that plasticity to salinity in stems of Salicornia ramosissima is expressed at a modular level, so intraplant variation should be considered in further studies. and S. Redondo-Gómez ... [et al.].
Glaucium flavum is a biennial plant that bears a rosette of leaves, producing a flower stalk, bracteate monochasium, in its second year. The aims of this work were both to investigate the contribution of bracts to gas-exchange activities in this species and to compare this contribution to that of rosette leaves. In addition, we investigated the extent to which its responses can be explained by chloroplast ultrastructure, as well as the possible role of nutrient concentrations in the physiological responses of both leaf types. Gas exchange and plant characteristics regarding chlorophyll fluorescence were examined in a field experiment; we also determined leaf relative water content, tissue concentrations of photosynthetic pigments, chloroplast ultrastructure and nutrient contents. Although bracts indeed contributed to gas-exchange activities of G. flavum, rosette leaves showed higher values of net photosynthetic rate and stomatal conductance to CO2 for photosynthetic photon flux density above 200 μmol m-2 s-1. The incongruities in photosynthetic rates between bracts and leaves may be explained by the bigger chloroplasts of rosette leaves, which results in a larger membrane surface area. This agrees with the higher pigment concentrations and quantum efficiency of photosystem II values recorded as well for rosette leaves. On the other hand, bracts showed higher sodium concentrations, which could be a mechanism for salt tolerance of G. flavum. and S. Redondo-Gómez, E. Mateos-Naranjo, F. J. Moreno.
Fluorescence microscopy and physiological examination revealed the presence of an inner cylinder of active photosynthetic cells located below the endodermis-like layer in stems of four of the six taxa of the tribe Salicornieae (Chenopodiaceae). and S. Redondo-Gómez ... [et al.].