This work aimed to evaluate if chilling stress may be mitigated by elevated CO2 (EC) in Beta vulgaris L. plants. Photosynthetic rate was measured at 21% and 2% O2 after a short-term exposure of 5 h at four different treatments: 360 μmol(CO2) mol-1/25°C (AC); 360 μmol(CO2) mol-1/4°C (AC+LT); 700 μmol(CO2) mol-1/25°C (EC); 700 μmol(CO2) mol-1/4°C (EC+LT). Compared to AC+LT, EC+LT plants showed higher values of CO2 fixation, photochemical activity, and Rubisco amount. These latter invest a higher portion of photosynthetic electron flow to O2, differently from AC+LT plants that promote the regulated thermal dissipation processes. In EC+LT plants, the photosynthetic electron flow to O2 acts as a safety mechanism against the excess of absorbed light, upon return to prechilling conditions, allowing photosynthetic apparatus to maintain its efficiency. In AC+LT plants, the increase of thermal dissipation processes was not adequate to guarantee the PSII photoprotection and the photosynthetic recovery after chilling., C. Arena, L. Vitale., and Obsahuje bibliografii
Chlorophyll (Chl) fluorescence is a subtle reflection of primary reactions of photosynthesis. Intricate relationships between fluorescence kinetics and photosynthesis help our understanding of photosynthetic biophysical processes. Chl fluorescence technique is useful as a non-invasive tool in eco-physiological studies, and has extensively been used in assessing plant responses to environmental stress. The review gives a summary of some Chl fluorescence parameters currently used in studies of stress physiology of selected cereal crops, namely water stress, heat stress, salt stress, and chilling stress.
For biological control it is necessary to store mass-reared biological control agents when the demand is low. The objective of this study is to increase their shelf life without significantly reducing their fitness. The ladybird Hippodamia variegata is a widespread and voracious aphidophagous predator, with an important role in decreasing the abundance of pest aphids in many parts of the world. We investigated the effect of storage at three temperatures: constant 1°C, constant 6°C, and an alternating thermal regime of 12°C/0°C (the higher temperature for 12 h and the lower one for another 12 h). They were exposed to each of the temperature regimes for either 15, 25, 35, 45 or 60 days. We recorded survival, pre-oviposition period, fecundity and voracity of adult H. variegata following storage. The survival of adult beetles significantly declined with increasing storage duration at all three temperatures. Storage at 6°C up to 35 days and at 12°C/0°C up to 45 days had no significant effects on the fecundity of the ladybirds, but storage for longer significantly decreased fecundity. Beetles stored at 1°C for any of the durations had significantly lower fecundities. Prolonged cold storage caused an increase in the pre-oviposition period at all storage temperatures. Generally, 6°C and 12°C/0°C are the best temperatures for storing the ladybirds as they had the least negative effect on their fitness. The results of this research can help in improving the quality of H. variegata stored for use as biological control agents in the following season.
Effects of chilling on dispersal characteristics of adults of the water strider, Aquarius paludum were studied in the laboratory. The condition of flight muscles was monitored during overwintering under natural conditions in Kochi (33°N), Japan. For diapause adults kept under 12h light-12h dark (12L : 12D), chilling at 7°C for 48h from the 70th day after emergence caused lower Supercooling Point (SCP) and promoted higher flight propensity than among gerrids not exposed to chilling. For reproductive adults kept under 15.5L : 8.5D, 91.3% of 34 adults retained well-developed flight muscles 1 week after the chilling (49 days after emergence), whereas 67.6% of 49 adults which had not been exposed to 7°C histolysed their flight muscles. According to diapause development, part of the adults which had well developed flight muscles histolysed them during December to February. Chilling in fall might trigger dispersal to overwintering sites by diapause adults and, that in spring could inhibit histolysis of flight muscles by overwintered reproductive adults.
Industrial chicory, Cichorium intybus L., has rather poor early vigour under the typical early spring morning conditions of low temperatures and high light intensity. Screening tools are being developed to assess the cold tolerance/sensitivity of young industrial chicory plants under these conditions. Refinement of such tools requires better understanding of the plants' physiological responses. In this paper we discuss the effects of growth temperature (GT), measurement temperature (MT), and measuring light intensity (ML) on the relaxation of the Kautsky curve. We chose the chicory variety 'Hera', as it is known to possess a good average early vigour. Young plants of the variety 'Hera' were grown at three temperatures (GT): 16°C (reference), 8°C (intermediate), and 4°C (cold stress). The dark relaxation kinetics were analyzed at different light intensities (ML) in combination with different measurement temperatures (MT). The three components of the nonphotochemical quenching process (NPQE, NPQT, and NPQI) were determined. NPQE was not affected by GT but was significantly affected by MT and ML. NPQT and NPQI were affected by all factors and their interactions. An acclimation effect for plants grown at low GT was detected. Acclimation resulted in lower NPQT and NPQI values. The halftime of the inhibition depending on NPQ (NPQI) was not affected by any of the factors investigated. Based on the data generated, we conclude that NPQI is a valuable parameter for screening the cold sensitivity of young industrial chicory plants. and P. Lootens ... [et al.].
Industrial chicory, Cichorium intybus L., is cultivated for the production of inulin. Most varieties of industrial chicory exhibit rather poor early growth, which limits further yield improvements in their European cultivation area. The poor early growth could be due to suboptimum adaptation of the gene pool to growth at low temperatures, sometimes in combination with high light intensities, which is typical of early-spring mornings. We have used chlorophyll (Chl) a fluorescence to evaluate the response of young plants of the cultivar 'Hera' to low temperatures and high light intensities. Plants were grown at three temperatures: 16°C (reference), 8°C (intermediate), and 4°C (cold stress). Light-response measurements were carried out at different light intensities in combination with different measurement temperatures. Parameters that quantify the photosystem II (PSII) operating efficiency (including PSII maximum efficiency and PSII efficiency factor) and nonphotochemical quenching (NPQ) are important to evaluate the stress in terms of severity, the photosynthetics processes affected, and acclimation to lower growth temperatures. The results clearly demonstrate that in young industrial chicory plants the photosynthetic system adapts to lower growth temperatures. However, to fully understand the plant response to the stresses studied and to evaluate the long-term effect of the stress applied on the growth dynamics, the subsequent dark relaxation dynamics should also be investigated. and S. Devacht ... [et al.].
The effects of chilling treatment (4 °C) under low irradiance, LI (100 μmol m-2 s-1) and in the dark on subsequent recovery of photosynthesis in chilling-sensitive sweet pepper leaves were investigated by comparing the ratio of quantum yields of photosystem (PS) 2 and CO2 assimilation, ΦPS2/ΦCO2, measured in normal air (21 % O2, NA) and low O2-air (2% O2, LOA), and by analyzing chlorophyll (Chl) a fluorescence parameters. Chilling treatment in the dark had little effect on Fv/Fm and ΦPS2/ΦCO2, but it caused the decrease of net photosynthetic rate (PN) under saturating irradiance after 6-h chilling treatment, indicating that short-term chilling alone did not induce PS2 photoinhibition. Furthermore, photorespiration and Mehler reaction also did not obviously change during subsequent recovery after chilling stress in the dark. During chilling treatment under LI, there were obvious changes in Fv/Fm and ΦPS2/ΦCO2, determined in NA or LOA. Fv/Fm could recover fully in 4 h at 25 °C, and ΦPS2/ΦCO2 increased at the end of the treatment, as determined in both NA and LOA. During subsequent recovery, ΦPS2/ΦCO2 in LOA decreased faster than in NA. Thus the Mehler reaction might play an important role during chilling treatment under LI, and photorespiration was an important process during the subsequent recovery. The recovery of PN under saturating irradiance determined in NA and LOA took about 50 h, implying that there were some factors besides CO2 assimilation limiting the recovery of photosynthesis. From the progress of reduced P700 and the increase of the Mehler reaction during chilling under LI we propose that active oxygen species were the factors inducing PS1 photoinhibition, which prevented the recovery of photosynthesis in optimal conditions because of the slow recovery of the oxidizable P700. and X.-G. Li ... [et al.].
The mechanistic basis for protection of exogenous ascorbate against photoinhibition at low temperature was examined in leaves of rice (Oryza sativa L.). Exposure of intact leaves to chilling temperature resulted in a drastic decrease in the speed of development of non-photochemical fluorescence quenching (NPQ). This was related to the low temperature-imposed restriction on the formation of the fast relaxing component of NPQ (qf). Feeding with 20 mM ascorbate markedly increased the rate of qf development at chilling temperature due primarily to the enhanced rate of zeaxanthin (Z) formation. On the other hand, ascorbate feeding had no influence on photosystem 2 (PS2)-driven electron flow. The reduced state of the PS2 primary electron acceptor QA decreased in ascorbate-fed leaves exposed to high irradiance at chilling temperature owing to the increased Z-associated thermal energy dissipation in the light-harvesting antenna system of PS2. Furthermore, ascorbate feeding increased the photosynthetic apparatus of rice leaves to resist photoinhibition at low temperature. The protective effect of exogenous ascorbate was fully accounted for by the enhanced xanthophyll cycle activity. and C.-C. Xu ... [et al.].
The cold stress effect on early vigour and photosynthesis efficiency was evaluated for five industrial chicory varieties with contrasting early vigour. The relationships between the growth and physiological parameters were assessed. The varieties were examined at three growth temperatures: 16 (reference), 8 (intermediate) and 4 °C (stress). The effect was measured using physiological processes (growth, photosynthesis, chlorophyll a fluorescence), and pigment content. The analysis of the measured growth parameters (dry leaf and root mass, and leaf area) indicated that temperature had a significant effect on the varieties, but the overall reaction of the varieties was similar with lowering temperatures. The photosynthesis and chlorophyll a fluorescence measurements revealed significant changes for the photosynthesis (maximum net photosynthesis, quantum efficiency, light compensation point and dark respiration) and chlorophyll a fluorescence parameters (photochemical and non-photochemical quenching) with lowering temperatures for Hera and Eva, two extremes in youth growth. No significant differences could be found between the extremes for the different temperatures. The pigment content analysis revealed significant differences at 4 °C in contrast to 16 and 8 °C, especially for the xanthophyll/carotenoid pool, suggesting a protective role. Subsequently, the relationship between the physiological processes was evaluated using principal component analysis. At 4 °C, 2 principal components were detected with high discriminating power for the varieties and similar classification of the varieties as determined in the growth analysis. This provides a preview on the possible relationships between photosynthesis and growth for industrial chicory at low temperatures. and S. Devacht ... [et al.].
Experiments were carried out to investigate the changes in CO2 assimilation, photon allocation, and photosynthetic electron flux in leaves of cucumber (Cucumis sativus L.) plants after chilling stress. Chilling significantly decreased CO2 assimilation, the energy flux via linear electron transport (J PS2) and non-constitutive thermal dissipation (J NPQ) but increased fluorescence and constitutive thermal dissipation (J f,D) in chilling-sensitive genotype Jinyan No. 4. In contrast, chilling had little effects on J NPQ and J f,D although CO2 assimilation and J PS2 were inhibited in chilling-tolerant genotype Jinchun No. 3. In parallel with the reduction in J PS2, electron flux to oxygenation and carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase all significantly decreased while electron flux to O2 significantly increased, especially in chilling-sensitive genotype. Thermal and fluorescence dissipation were the main energy dissipation pathways whilst water-water cycle was an important electron sink when photosynthetic carbon reduction was suppressed after chilling. Chilling sensitivity of the photosynthetic apparatus was related to the operation of different photoprotection mechanisms. and Z. H. Zhou ... [et al.].