The effect of a short cold stress in combination with photoinhibition stress, similar to a low temperature and a high irradiance situation during early morning in the spring time, was examined on four maize cultivars common for Belgium, that differ in early vigour. After 1 h of 2 °C and 500 μmol(photon) m-2 s-1, quantum efficiency and maximum photosynthesis rate at saturating irradiance decreased on average by 11 and 8 %, respectively. For one cultivar, Magister, the decrease was the largest: by 23 and 10 %, respectively. For this cultivar it was combined with a decrease of the water vapour conductance after the stress. The decrease of Fv/F0 due to the cold/light stress was dependent on the cold tolerance (early vigour) of the cultivars. Fv/F0 changed with -45.5 and -40.2 % for the cultivars Ardiles and Banguy, respectively (cultivars with a less good early vigour) in comparison to -36.3 and -35.9 % for Fjord and Magister, which have a good early vigour. Also the ratio of total chlorophylls/total carotenoids changed in dependence on cold tolerance of the cultivars. For more cold tolerant cultivars, the relative amount of total carotenoids (x+c) was higher, indicating a higher protective state. Both the parameter Fv/F0 and the ratio of total chlorophylls to total carotenoids can be used to differentiate the cold tolerant cultivars from the cold non-tolerant ones. Fv/F0 has the advantage because its resolving power is larger and the measurement is less expensive than determination of the pigment ratio. and P. Lootens, J. van Waes, L. Carlier.
The cold stress effect on early vigour and photosynthesis efficiency was evaluated for five industrial chicory varieties with contrasting early vigour. The relationships between the growth and physiological parameters were assessed. The varieties were examined at three growth temperatures: 16 (reference), 8 (intermediate) and 4 °C (stress). The effect was measured using physiological processes (growth, photosynthesis, chlorophyll a fluorescence), and pigment content. The analysis of the measured growth parameters (dry leaf and root mass, and leaf area) indicated that temperature had a significant effect on the varieties, but the overall reaction of the varieties was similar with lowering temperatures. The photosynthesis and chlorophyll a fluorescence measurements revealed significant changes for the photosynthesis (maximum net photosynthesis, quantum efficiency, light compensation point and dark respiration) and chlorophyll a fluorescence parameters (photochemical and non-photochemical quenching) with lowering temperatures for Hera and Eva, two extremes in youth growth. No significant differences could be found between the extremes for the different temperatures. The pigment content analysis revealed significant differences at 4 °C in contrast to 16 and 8 °C, especially for the xanthophyll/carotenoid pool, suggesting a protective role. Subsequently, the relationship between the physiological processes was evaluated using principal component analysis. At 4 °C, 2 principal components were detected with high discriminating power for the varieties and similar classification of the varieties as determined in the growth analysis. This provides a preview on the possible relationships between photosynthesis and growth for industrial chicory at low temperatures. and S. Devacht ... [et al.].