Carnosine (CARN) is an anti-glycating agent able to quench superoxide, and to neutralize 4-hydroxynonenal. Trolox-carnosine (CARN-T) was synthesized because of its resistance against degradation and to improve CARN antioxidant capacity. We evaluated the impact of trolox (TRO), CARN and its derivative CARN-T on oxidative stress (OS) in brain during rat adjuvant arthritis (AA). The experiments were done on healthy, control arthritic and arthritic animals with administration of CARN 150 mg/kg b.w., TRO 41 mg/kg b.w. and CARN-T 75 mg/kg b.w. in a daily dose during 28 days. Antioxidants did not affect the body weight on day 14, but on day 28 TRO enhanced the weight reduction. On day 14 and 28 CARN-T and TRO reduced arthritic score. IL-1beta, MCP-1 and MMP-9 were measured in plasma on day 14. MCP-1 was decreased by CARN-T and TRO. All antioxidants reduced IL-1beta and MMP-9 levels. Malondialdehyde, 4-hydroxynonenal and protein carbonyls were increased in brain. CARN, CARN-T and TRO prevented higher lipid and protein oxidation in brain. CARN and CARN-T caused no weight reduction like TRO that has an advantage in inflammatory arthritis. Moreover the antioxidants administered had a similar therapeutic effects on arthritic score, markers of inflammation in plasma and OS in brain., S. Poništ, L. Slovák, V. Kuncírová, T. Fedorova, A. Logvinenko, O. Muzychuk, D. Mihalová, K. Bauerová., and Obsahuje bibliografii
Endothelin alters central sympathetic responses, but the resultant effects on arrhythmogenesis are unknown. We examined ventricular tachyarrhythmias after endothelin receptor-A blockade in the brain of Wistar rats with acute myocardial infarction. For this aim, BQ-123 (n=6) or phosphate-buffered saline (n=6) were injected intracerebroventricularly. After 10 min, the left coronary artery was ligated, followed by implantation of telemetry transmitters. Electrocardiography and voluntary activity (as a surrogate of acute left ventricular failure) were continuously monitored for 24 h. Infarct-size was similar in the two groups. There were fewer episodes of ventricular tachyarrhythmias of shorter average duration in treated rats, leading to markedly shorter total duration (12.3±8.9 s), when compared to controls (546.2±130.3 s). Voluntary activity increased in treated rats during the last hours of recording, but bradyarrhythmic episodes were comparable between the two groups. Endothelin receptor-A blockade in the brain of rats decreases the incidence of ventricular tachyarrhythmias post-ligation, without affecting bradyarrhythmic episodes. These findings call for further research on the pathophysiologic role of endothelin during acute myocardial infarction.
K+-p-nitrophenylphosphatase (K+pNPPase) is the enzyme, which is considered to be involved in K+-dependent hydrolysis of the phosphoenzyme in the reaction cycle of Na+, K+-ATPase. The aim of our present study was to characterize some features of K+pNPPase in homogenates of the rat brain and liver. We determined p-nitrophenylphosphatase (pNPPase) activity in the presence of various ion combinations (Mg 2++K+, Mg2+, K+). We found a higher total pNPPase activity in the brain (0.8±0.079 nkat/mg protein) than in the liver (0.08±0.01 nkat/mg protein). Contrary to the liver, the main part of the total brain activity was K+-dependent. The activity of K+pNPPase was significantly higher in cerebral cortex homogenates (0.86±0.073 nkat/mg protein) in comparison to those of the whole brain (0.57±0.075 nkat/mg protein). The specific K+pNPPase activity was two times higher in the isolated pellet fraction (0.911±0.07 nkat/mg protein), rich in synaptosomes, compared to the whole brain homogenate (0.57±0.075 nkat/mg protein). Our results demonstrate the high activity of K+pNPPase in the brain tissue and its distribution mainly into the pellet fraction, what might indicate a possible role of K+pNPPase in specific structures of the brain, e.g. in synaptosomes., M. Ďurfinová, M. Brechtlová, B. Líška, Ž. Barošková., and Obsahuje seznam literatury
Taking into consideration the biological importance of interaction between antioxidant defense (AD) enzymes and sexual steroid hormones it was deemed important to compare our recent achievements in the field with the state of current knowledge. The main goal of the present review was to investigate the changes of AD enzyme activities: superoxide dismutases, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase in the brain of female and male rats depending on progesterone and estradiol. These ovarian steroids produce their effects by acting on numerous target tissues and organs, such as the reproductive organs, bone tissue and cartilage, peripheral blood vessels and the central nervous system (CNS). We have chosen it as a new parameter that might represent an important indicator of the changes within the CNS, bearing in mind the biological importance of the enzymes of the AD system. Our experimental results indicate that the AD enzyme activities in the brain tissue of female and male rats show a certain dependence on the concentration of progesterone and estradiol. The present review suggests that the modulation of the oxidative and antioxidative capacity by sexual steroid hormones is mediated through antioxidant metabolizing enzymes., S. B. Pajović, Z. S. Saičić., and Obsahuje bibliografii a bibliografické odkazy
Small GTPases of the Rab family are key regulators of membrane trafficking. Monoclonal antibodies are useful tools for identifying proteins that interact with other proteins and for examining their tissue distribution. We selected a monoclonal antibody against Rab8 of Bombyx mori L. It specifically recognized amino acid residues 30-109, which are conserved among Rab8 proteins, and did not recognize any other Rab proteins. Western blotting using the antibody revealed one band in the brains of B. mori and rat. Far-Western blotting analysis detected three proteins interacting with Rab8. These results indicate that this antibody is useful for clarifying the physiological function of Rab8 of B. mori and other species. This is a report of a study on a monoclonal antibody against insect Rab protein.
Brain Awareness Week is a series of global events held in many parts of the world to increase public awareness of the brain. Every March BAW brings together the efforts of universities, hospitals, patient groups, government associations worldwide in a week-long commemoration of the brain. Founded and coordinated by the Dana Alliance for Brain Initiatives and the European Dana Alliance for the Brain, BAW is observing its fifteenth anniversary campaign in 2010. More than 1,000 students heard lectures by top Czech scientists as part of the annual Brain Awareness Week that took place in the administration building of the Academy of Sciences of the Czech Republic 15-21 March 2010. and Gabriela Adámková.
Příspěvek se zaměřuje na neuropsychologické výzkumy percepční laterality realizované na Slovensku. Opisují se především adaptace a varianty metodik zkoumání sluchové, zrakové a hmatové laterality, diskutují se možnosti jejich aplikace v neuropsychologické diagnostice.
Příspěvek nastiňuje přehled vývoje oboru neuropsychologie ve světě i u nás, v tehdejším Československu doplněný zkušenostmi z práce v neuropsychologické laboratoři v Psychiatrickém centru v Heiloo v Nizozemí. Je pojednán stav neuropsychologické diagnostiky a následné rehabilitace jedinců s postiţením mozku. Je podtrţen vliv Alexandra Romanoviče Luriji, který stál u vzniku klinické i teoretické neuropsychologie. Autor představuje model "uzavřeného kruhu" - jako model moţné neuropsychologické rehabilitace v psychiatrii. V závěru příspěvku je načrtnut výhled oboru neuropsychologie. and The article outlines the development of neuropsychology abroad and in our country, in the former Czechoslovakia, enriched by the experiences from work in neuropsychological laboratory in Psychiatric Centre at Heiloo, Netherlands.
The state of neuropsychological diagnostic and ensuing rehabilitation of persons with brain afflictions is discussed and the influence of Alexander Romanovich Luria, who was one of the founders of both clinical and theoretical neuropsychology, is underlined. The author present the model of „a closed circle“ as a model of possible neuropsychological rehabilitation in psychiatry. The article concludes by outlining prospects of the field of neuropsychology.
Recent data suggest that there is interaction between peripheral angiotensin II and nitric oxide. However, sparse information is available on the mutual interaction of these two compounds in the brain. The potential intercourse of nitric oxide with brain neuropeptides needs to be substantiated by assessing its local production and gene expression of the synthesizing enzymes involved. The aim of the present study was to evaluate whether the gene expression of brain nitric oxide synthase (bNOS) is related to the sites of gene expression of different components of the rat brain renin angiotensin system (renin, angiotensin converting enzyme (ACE) or angiotensin receptors of AT1 and AT2 subtypes). The levels of corresponding mRNAs were measured and correlated in nine structures of adult rat brain (hippocampus, amygdala, septum, thalamus, hypothalamus, cortex, pons, medulla and cerebellum). As was expected, positive correlation was observed between renin and angiotensin-converting enzyme mRNAs. Moreover, a significant correlation was found between brain NO synthase and AT1 receptor mRNAs, but not with mRNA of the AT2 receptor, ACE and renin. Parallel distribution of mRNAs coding for bNOS and AT1 receptors in several rat brain structures suggests a possible interaction between brain angiotensin II and nitric oxide, which remains to be definitely demonstrated by other approaches., O. Križanová, A. Kiss, Ľ. Žáčiková, D. Ježová., and Obsahuje bibliografii
Glutamate is the main excitatory neurotransmitter in the brain and ionotropic glutamate receptors mediate the majority of excitatory neurotransmission (Dingeldine et al. 1999). The high level of glutamatergic excitation allows the neonatal brain (the 2 nd postnatal week in rat) to develop quickly but it also makes it highly prone to age-specific seizures that can cause lifelong neurological and cognit ive disability (Haut et al. 2004). There are three types of ionotropic glutamate receptors (ligand-gated ion channels) named according to their prototypic agonists: N- methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) and kainate (KA). During early stages of postnatal development glutamate receptors of NMDA and AMPA type undergo intensive functional changes owing to modifications in their subunit composition (Carter et al. 1988, Watanabe et al. 1992, Monyer et al. 1994, Wenzel et al. 1997, Sun et al. 1998, Lilliu et al. 2001, Kumar et al. 2002, Matsuda et al. 2002, Wee et al. 2008, Henson et al. 2010, Pachernegg et al. 2012, Paoletti et al. 2013). Participation and role of these receptors in mechanisms of seizures and epilepsy became one of the main targets of intensive investigation (De Sarro et al. 2005, Di Maio et al. 2012, Rektor 2013). LiCl/Pilocarpine (LiCl/Pilo) induced status epilepticus is a model of severe seizures resulting in development temporal lobe epilepsy (TLE). This review will consider developmental changes and contribution of NMDA and AMPA receptors in LiCl/Pilo model of status epilepticus in immature rats., E. Szczurowska, P. Mareš., and Obsahuje bibliografii a bibliografické odkazy