People with metabolic syndrome have higher risk of cardiovascular diseases then those without. The aim of the work was to investigate whether high fat diet administered to Prague hereditary hypertriglyceridemic (HTG) rats can induce signs of metabolic syndrome (MetS). Our results showed that HTG rats fed high fat diet (HTGch) had disturbed glucose metabolism and also lipid metabolism – increased serum triacylglycerols (TAG), total cholesterol (Ch), low-density lipoprotein
-Ch (LDL-Ch), and decreased high-density lipoprotein-Ch (HDL-Ch). Their livers proved markers of developing steatosis. Moreover, HTGch had increased blood pressure, yet the vascular endothelium was not
significantly damaged. All these changes were accompanied with oxidative stress and tissue damage identified as increased liver concentrations of thiobarbituric acid reactive substances (TBARS) and activity of the lysosomal enzyme N-acetyl-D-glucosaminidase (NAGA). We assume that the model used may be suitable for the study of MetS with no evidence of obesity. Prolongation of the high fat diet duration might have a major impact on all
parameters tested, especially on vascular endothelial function.
Carnosine (CARN) is an anti-glycating agent able to quench superoxide, and to neutralize 4-hydroxynonenal. Trolox-carnosine (CARN-T) was synthesized because of its resistance against degradation and to improve CARN antioxidant capacity. We evaluated the impact of trolox (TRO), CARN and its derivative CARN-T on oxidative stress (OS) in brain during rat adjuvant arthritis (AA). The experiments were done on healthy, control arthritic and arthritic animals with administration of CARN 150 mg/kg b.w., TRO 41 mg/kg b.w. and CARN-T 75 mg/kg b.w. in a daily dose during 28 days. Antioxidants did not affect the body weight on day 14, but on day 28 TRO enhanced the weight reduction. On day 14 and 28 CARN-T and TRO reduced arthritic score. IL-1beta, MCP-1 and MMP-9 were measured in plasma on day 14. MCP-1 was decreased by CARN-T and TRO. All antioxidants reduced IL-1beta and MMP-9 levels. Malondialdehyde, 4-hydroxynonenal and protein carbonyls were increased in brain. CARN, CARN-T and TRO prevented higher lipid and protein oxidation in brain. CARN and CARN-T caused no weight reduction like TRO that has an advantage in inflammatory arthritis. Moreover the antioxidants administered had a similar therapeutic effects on arthritic score, markers of inflammation in plasma and OS in brain., S. Poništ, L. Slovák, V. Kuncírová, T. Fedorova, A. Logvinenko, O. Muzychuk, D. Mihalová, K. Bauerová., and Obsahuje bibliografii