Rapid wound closure in extensively burned patients has remained one of the major unresolved issues of medicine. Integra® is the most widely established artificial skin, which is composed of a porous matrix of cross-linked bovine collagen and chondroitin 6-sulphate covered by a semi-permeable silicone layer. We present here a (immuno)histological study of a severely burned patient with a full-thickness burn treated with a tissue-engineered dermal template (Integra®) and split-thickness skin graft-based protocol. Immunohistochemical investigation of the artificial dermis revealed that immune cell infiltration reached its peak on day 10. Tissue immunophenotyping found an increase in CD3+ cells over the course of the study as well as CD4 and CD8 positivity on day 40, indicating remaining T-cell subpopulations. We observed weak/no infiltration of NK cells (CD56+). In conclusion, the use of bi-layer Integra® represents a feasible and safe procedure resulting in formation of non-irritating dermal substitutes.
It has been shown previously that oestradiol protects the vascular network, leading to increased skin flap viability associated with Bcl-2, VEGF and FGF-2 up-regulation. We have shown that genistein, a natural selective oestrogen receptor modulator, also increases skin flap viability in rats and induces Bcl-2 expression in human umbilical vein endothelial cells. In the present study we aimed to answer the question whether genistein increases expression of Bcl-2, a potent anti-apoptotic protein, in human dermal microvascular endothelial cells (HMVEC-d) as well. Our results showed that administration of genistein induces Bcl-2 expression in a concentration-dependent manner. Cell co-treatment with genistein and anti-ER compounds (MPP, PHTPP, ICI, G-15) diminished the observed positive effect of genistein on Bcl-2 expression. The decrease in Bcl-2 expression in HMVEC-d was most prominent after co-treatment with ICI (nuclear ER antagonist/ GPR30 agonist) and PHTPP (selective ER-β antagonist). In conclusion, genistein increases Bcl-2 expression in HMVEC-d, contributing to its protective effect on the skin flap viability. However, the question whether the mechanism is ER-specific (via ER-β) has to be answered in further studies using a model of gene silencing or genetically modified cells.
Diabetic foot ulcer (DFU) is a serious complication of diabetes and hyperbaric oxygen therapy (HBOT) is also considered in comprehensive treatment. The evidence supporting the use of HBOT in DFU treatment is controversial. The aim of this work was to introduce a DFU model in ZDF rat by creating a wound on the back of an animal and to investigate the effect of HBOT on the defect by macroscopic evaluation, quantitative histological evaluation of collagen (types I and III), evaluation of angiogenesis and determination of interleukin 6 (IL6) levels in the plasma. The study included 10 rats in the control group (CONT) and 10 in the HBOT group, who underwent HBOT in standard clinical regimen. Histological evaluation was performed on the 18th day after induction of defect. The results show that HBOT did not affect the macroscopic size of the defect nor IL6 plasma levels. A volume fraction of type I collagen was slightly increased by HBOT without reaching statistical significance (1.35±0.49 and 1.94±0.67 %, CONT and HBOT, respectively). In contrast, the collagen type III volume fraction was ~120 % higher in HBOT wounds (1.41±0.81 %) than in CONT ones (0.63±0.37 %; p=0.046). In addition, the ratio of the volume fraction of both collagens in the wound ((I+III)w) to the volume fraction of both collagens in the adjacent healthy skin ((I+III)h) was ~65 % higher in rats subjected to HBOT (8.9±3.07 vs. 5.38±1.86 %, HBOT and CONT, respectively; p=0.028). Vessels density (number per 1 mm2 ) was found to be higher in CONT vs. HBOT (206.5±41.8 and 124±28.2, respectively, p<0.001). Our study suggests that HBOT promotes collagen III formation and decreases the number of newly formed vessels at the early phases of healing., Jiří Růžička, Martina Grajciarová, Lucie Vištejnová, Pavel Klein, Filip Tichánek, Zbyněk Tonar, Jiří Dejmek, Jiří Beneš, Lukáš Bolek, Robert Bajgar, Jitka Kuncová., and Obsahuje bibliografii
Angiogenesis is known to be triggered by various stimuli including hypertension. It was previously found that NO-deficient hypertension is accompanied by structural remodeling of the cardiac muscle and large coronary arteries. This study was aimed to examine the qualitative subcellular alterations of capillaries in the heart of the rats treated with L-NAME (40 mg/kg/day for 4 weeks). The results showed that long-lasting inhibition of NO production induced an apparent activation of fibroblast function. This was associated with enhancement of fibrozation as well as with the induction of angiogenesis. Accordingly, fibroblasts were frequently located in the vicinity of capillary pericytes, which was followed by their detachment and migration. Moreover, besides inactive or even injured capillaries, the other ones exhibited extensive proteosynthetic activity linked to capillary growth, proliferation and migration of endothelial cells. The results strongly indicate enhanced triggering of the angiogenesis in L-NAME-induced NO-deficient hypertension., Ľ. Okruhlicová, N. Tribulová, I. Bernátová, O. Pecháňová., and Obsahuje bibliografii
Proliferation and migration of retinal endothelial cells (RECs) contribute to the development of diabetic retinopathy. PLAG1 (pleomorphic adenoma gene 1) functions as a zinc-finger transcription factor to participate in the development of lipoblastomas or pleomorphic adenomas of the salivary glands through regulation of cell proliferation and migration. The role of PLAG1 in diabetic retinopathy was investigated in this study. Firstly, RECs were induced under high glucose conditions, which caused reduction in viability and induction of apoptosis in the RECs. Indeed, PLAG1 was elevated in high glucosetreated RECs. Functional assays showed that silence of PLAG1 increased viability and suppressed apoptosis in high glucose-induced RECs, accompanied with up-regulation of Bcl-2 and down-regulation of Bax and cleaved caspase-3. Moreover, migration of RECs was promoted by high glucose conditions, while repressed by knockdown of PLAG1. High glucose also triggered angiogenesis of RECs through up-regulation of vascular endothelial growth factor (VEGF). However, interference of PLAG1 reduced VEGF expression to retard the angiogenesis. Silence of PLAG1 also attenuated high glucose-induced up-regulation of Wnt3a, β-catenin and c-Myc in RECs. Moreover, silence of PLAG1 ameliorated histopathological changes in the retina of STZ-induced diabetic rats through down-regulation of β-catenin. In conclusion, knockdown of PLAG1 suppressed high glucose-induced angiogenesis and migration of RECs, and attenuated diabetic retinopathy by inactivation of Wnt/ β-catenin signalling.
Cancer development is a highly complicated process in which tumour growth depends on the development of its vascularization system. To support their own growth, tumour cells significantly modify their microenvironment. One of such modifications inflicted by tumours is stimulation of endothelial cell migration and proliferation. There is accumulating evidence that extracellular vesicles (EVs) secreted by tumour cells (tumour-derived EVs, TEVs) may be regarded as “messengers” with the potential for affecting the biological activities of target cells. Interaction of TEVs with different cell types occurs in an auto- and paracrine manner and may lead to changes in the function of the latter, e.g., promoting motility, proliferation, etc. This study analysed the proangiogenic activity of EVs derived from human pancreatic adenocarcinoma cell line (HPC-4, TEVHPC) in vitro and their effect in vivo on Matrigel matrix vascularization in severe combined immunodeficient (SCID) mice. TEVHPC enhanced proliferation of HPC-4 cells and induced their motility. Moreover, TEVHPC stimulated human umbilical vein endothelial cell (HUVEC) proliferation and migration in vitro. Additionally, TEVHPC influenced secretion of proangiogenic factors (IL-8, VEGF) by HUVEC cells and supported Matrigel matrix haemoglobinization in vivo. These data show that TEVs may support tumour propagation in an autocrine manner and may support vascularization of the tumour. The presented data are in line with the theory that tumour cells themselves are able to modulate the microenvironment via TEVs to maximize their growth potential.
100 rats were randomly divided into a sham-operated group and middle cerebral artery occlusion (MCAO) modeling groups. The sham group after surgery was observed for 14 days. After MCAO, some rats received isometric contraction training (ICT) which was as follows: an atraumatic tourniquet was placed around left or right hind limb to achieve hind limb ischemia for 5 min, followed by 5 min of reperfusion, 4 cycles for one time, once a day, and five days per week. The MCAO modeling groups included the following four groups: i) a group only received MCAO, and was observed for seven days (MCAO-7d), ii) a group only received MCAO, and was observed for 14 days (MCAO-14d), iii) a group, after MCAO, received ICT for seven days (ICT-7d), and iv) a group, after MCAO, received ICT for 14 days (ICT-14d). Brain infarct area, behavioral outcomes, the number of neurons, apoptosis, cerebral edema and cerebral water content were assessed, respectively. The mRNA expression of vascular endothelial growth factor (VEGF) was assayed with RT-PCR, and protein expression of VEGF was quantified with western blot. compared with MCAO controls, cerebral infarction, neurological deficits and neuronal apoptosis were reduced significantly in the ICT groups, while the number of neurons was increased. Moreover, the mRNA expression of VEGF and protein expression of VEGF were enhanced after 1 and 2 weeks of ICT. ICT may promote angiogenesis and neuroprotection after ischemic stroke and this new remodeling method provide a novel strategy for rehabilitation of stroke patients.
The goal of this study is to evaluate if promotion of angiogenesis by systemic treatment with an antagomir against miR-92a, a well established inhibitor of angiogenesis, will maximize the benefits of exercise on bone. Ten week old female C57BL6/J mice were subjected to two weeks of external load by four point bending. During the first week of mechanical loading (ML), mice were injected (2.7 mg/kg of bodyweight) with antagomir against miR-92 or control antagomir (3 alternate days via retro-orbital). No difference in tissues weights (heart, kidney, liver) were found in mice treated with miR-92 vs. control antagomir suggesting no side effects. Two weeks of ML increased tibia TV, BV/TV and density by 6-15 %, as expected, in the control antagomir treated mice. Similar increases in the above parameters (7-16 %) were also seen in mice treated miR-92 antagomir. Administration of miR-92 antagomir was effective in reducing levels of mir-92 in heart, liver and skeletal muscle and in contrast, expression levels of two other microRNA’s miR-93 and miR-20a remain constant, thus suggesting specificity of the antagomir used. Surprisingly, we failed to detect significant changes in the expression levels of vascular genes (VEGF, CD31 and Tie2) in heart, liver or skeletal muscle. Based on these findings, we conclude that systemic administration of antagomir against miR-92 while reduced expression levels of miR-92 in the tissues; it did not significantly alter either angiogenic or osteogenic response, thus suggesting possible redundancy in miR-92 regulation of angiogenesis., A. Sengul, ... [et al.]., and Obsahuje seznam literatury