In the mammalian neocortex, the calcium-binding protein calretinin is expressed in a subset of cortical interneurons. In the recent years, research on interneurons is one of the most rapidly growing fields in neuroscience. This review summarizes the actual knowledge of the functions of calretinin in neuronal homeostasis and particularly of the distribution, connectivity and physiological properties of calretinin expressing interneurons in the neocortex of rodents and primates, including humans. The possible neuroprotective role of calretinin and the presumed “resistance” of calretinin-expressing interneurons to various pathological processes are also discussed., F. Barinka, R. Druga., and Obsahuje bibliografii a bibliografické odkazy
Application of knowledge about ischemic tolerance to clinic requires the solid understanding of mechanism of creation of this phenomenon. This review summarizes research that has been carried out in many laboratories over a long period of time, but the main focus will be on own experimental research. The main emphasis is devoted to the possibility of preparing full tolerance in the donor's body and its transfer to the patient in the form of activated blood plasma. Such plasma could be administered as soon as the patient is transported to the hospital and would take effect immediately after administration to the patient's bloodstream. One chapter is also devoted to anticonditioning, i.e. the possibility of preventing the activation of tolerance. Anticonditioning could be used to treat oncologic patients. We expect that this method could increase effectiveness of cancer treatment. Cross-tolerance with a wide range of diverse stressors gives us the courage to assume that activated plasma can significantly help with a wide range of pathological events., Jozef Burda, Rastislav Burda., and Obsahuje bibliografii
100 rats were randomly divided into a sham-operated group and middle cerebral artery occlusion (MCAO) modeling groups. The sham group after surgery was observed for 14 days. After MCAO, some rats received isometric contraction training (ICT) which was as follows: an atraumatic tourniquet was placed around left or right hind limb to achieve hind limb ischemia for 5 min, followed by 5 min of reperfusion, 4 cycles for one time, once a day, and five days per week. The MCAO modeling groups included the following four groups: i) a group only received MCAO, and was observed for seven days (MCAO-7d), ii) a group only received MCAO, and was observed for 14 days (MCAO-14d), iii) a group, after MCAO, received ICT for seven days (ICT-7d), and iv) a group, after MCAO, received ICT for 14 days (ICT-14d). Brain infarct area, behavioral outcomes, the number of neurons, apoptosis, cerebral edema and cerebral water content were assessed, respectively. The mRNA expression of vascular endothelial growth factor (VEGF) was assayed with RT-PCR, and protein expression of VEGF was quantified with western blot. compared with MCAO controls, cerebral infarction, neurological deficits and neuronal apoptosis were reduced significantly in the ICT groups, while the number of neurons was increased. Moreover, the mRNA expression of VEGF and protein expression of VEGF were enhanced after 1 and 2 weeks of ICT. ICT may promote angiogenesis and neuroprotection after ischemic stroke and this new remodeling method provide a novel strategy for rehabilitation of stroke patients.
a1_We investigated the potential neuroprotective effect of transient hypertension on neuronal cell death induced by ischemia-reperfusion. Recovery of neurons, terminally differentiated cells, is almost entirely dependent upon active transcription and repair of DNA damage. We focused on the histochemical detection of distribution of NOR (argyrophylic nucleolar proteins) reflecting nucleolar integrity, immunohistochemical detection of PARP-1 (poly(ADP-ribose) polymerase-1), MADD (mitogen-activated death domain), a protein accumulated in nucleoli upon stimulation by ischemia, the active form of caspase-3, a universal proteolytic enzyme of apoptosis. The terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP-biotin nick-end-labeling method (TUNEL) proved the presence of in situ DNA fragmentation. We used the model of transient focal cerebral ischemia in rats with occlusion of middle cerebral artery. In experimental group of rats, the transient hypertension was induced by constriction of the abdominal aorta. The period of ischemia lasted 15, 30, 60 and 120 min followed by 48 h of reperfusion. We examined the frontal lobe of the ipsilateral hemisphere for apoptosis of neurons and compared it with the intact brain tissue. In normotensive rats with transient focal cerebral ischemia, we found disintegrated nucleoli of cortical as well as subcortical neurons at all investigated periods of ischemia, whereas the neurons of intact animals showed compact nucleoli with a few satellites. Nuclear positivity for MADD and PARP-1 was apparent in the neocortex after 15 min and peaked after 30 min of ischemia. On the other hand, the subcortical neurons showed nuclear positivity after 60 and 120 min. The immunohistochemical reaction for active caspase 3 was apparent after 30 min onwards predominantly in the cortex. The TUNEL staining was distinct after 60 and 120 min., a2_In hypertensive rats, we found nucleolar disintegration, positivity for MADD, PARP-1 and caspase 3 after 30 min cortically and subcortically, followed by TUNEL positive staining of cortical neurons after 60 and 120 min. In summary, we detected delayed activation of neuronal apoptosis in transiently hypertensive rats with focal cerebral ischemia compared to normotensive animals. The apoptotic phenotype was confirmed by a panel of complementary methods showing rapid proteolysis-nucleolar segregation, MADD, PARP-1 and caspase-3 positivity as well as ultimate DNA fragmentation proved by the TUNEL assay., M. Smrčka, M. Horký, F. Otevřel, Š. Kuchtíčková, V. Kotala, J. Mužík., and Obsahuje bibliografii