The chilling and light stresses were experimentally created to explore photosynthesis of Fraxinus mandshurica seedlings in northeast China. Net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly with the decline of temperature and light. Significant interaction effects of light and chilling were observed on gas exchange of photosynthesis. The minimal fluorescence yield of the dark-adapted state (F0) increased with increasing light and decreasing temperature. Both high and low light stresses induced the decreases of the maximal quantum yield of PSII photochemistry (Fv/Fm), photochemical quenching coefficient (qP), nonphotochemical quenching (NPQ), and electron transport rate. Decline of Fv/Fm and increased F0 were observed under decreasing temperatures. Decreased NPQ and qP at frost temperature suggest that F. mandschurica failed to dissipate excess light energy. No interactive effects of chilling and light on chlorophyll fluorescence parameters suggests that F. mandschurica seedlings might be adapted to combined stresses of light and chilling., X. F. Li, L. Jin, C. Y. Zhu, Y. J. Wen, Y. Wang., and Obsahuje bibliografii
Ca2+ has been considered as a necessary ion for alleviation of stress-induced damages in plants. We investigated effects of exogenous Ca2+ on waterlogging-induced damage to pepper and its underlying mechanisms. Pepper seedlings under stress were treated by spraying of 10 mM CaCl2. Applying exogenous Ca2+ increased the biomass of pepper leaves and roots, improved photosynthetic characteristics, membrane permeability, root activity, osmotic substance contents, antioxidant enzyme and alcohol dehydrogenase activities, while it reduced lactate dehydrogenase activity. It maintained hydroxide radical contents and activities of malate dehydrogenase and succinate dehydrogenase relatively high. Our results suggested that applying exogenous Ca2+ could regulate osmotic substance contents, antioxidant system activity, root respiration, and metabolism, and subsequently alleviate waterlogging-induced damages to pepper plants., B. Z. Yang, Z. B. Liu, S. D. Zhou, L. J. Ou, X. Z. Dai, Y. Q. Ma, Z. Q. Zhang, W. C. Chen, X. F. Li, C. L. Liang, S. Yang, X. X. Zou., and Obsahuje bibliografii
To investigate into the relationship between two Rubisco activase (RCA) isoforms and photosynthetic rate, a set of enzyme-linked immunosorbent assay (ELISA) were developed for accurate quantification of two RCA polypeptides based on two specific monoclonal antibodies against different RCA isoforms. The results showed that content of RCA small isoform (RCAS) was 5-fold more than that of RCA large isoform (RCAL) content in all leaves and the RCAL/RCAS ratio reached maximum in the leaf with the highest photosynthetic rate. Although the difference in two RCA polypeptides accumulation in leaves was caused by different transcript level of two isoforms, the decrease of RCAL/RCAS ratio during leaf aging was not attributed to transcriptional regulation. The leaves with higher photosynthetic capacity exhibited higher RCAL/RCAS ratio and the decrease in photosynthetic rate and Rubisco activation state highly correlated with the decline of RCAL/RCAS ratio during leaf aging. Our results suggest that there is a posttranscriptional mechanism regulating the RCAL/RCAS ratio, which may play as a regulator modulating photosynthetic capacity during leaf aging in rice plant. and D. Wang ... [et al.].