The geometrid genus Cleorodes is shown to belong in the tribe Gnophini (sensu lato) and not in Boarmiini as previously assumed. The conclusion is based on an analysis of morphological characters of a number of genera in these tribes. Moreover, the result is unambiguously supported by a phylogenetic analysis of DNA sequence variation in three nuclear gene regions (segments D1 and D2 of 28S rRNA, and elongation factor 1α) and a mitochondrial gene, cytochrome oxidase-1. The phylogenetic hypothesis is based on a combined sequence data set, which was analysed using direct optimisation.
While the ultimate causes and adaptive significance of sexual size dimorphism (SSD) have been extensively studied, the developmental mechanisms behind this phenomenon have received little attention. Going through an additional larval instar may form a specific way of achieving SSD in arthropods. In the present study, the mechanisms of SSD determination of two lymantriid moths, with marked SSD, were studied. In both species, females tended to go through an additional instar compared to males, and form pupae that were more than twice the weight of the males. To reveal the role of an extra instar, larval growth was monitored in the laboratory and the growth parameters were analysed as dependent on sex and developmental type (number of instars). Prolongation of growth by means of adding an additional larval instar in females turned out to be the key mechanism in the determination of the highly female-biased SSD in the species studied. There is thus a developmental mechanism available that permits achieving a larger size by means of extending the growth period. This provides evidence against constraint-based evolutionary explanations for body sizes in insects. There was no considerable accumulation of SSD during earlier larval life when females went through more instars than males. In contrast, in those cases in which males and females had the same number of instars, SSD accumulated gradually during the course of several larval instars. Longer growing period turned out to be a crucial mechanism leading to the female-biased SSD even when instar number did not differ between sexes, although higher instantaneous relative growth rates of females also played a complementary role in the latter case. Within sexes, an additional instar was characteristic of initially smaller larvae, as predicted by the "threshold size" hypothesis.
Although the effects of host plant quality on the performance of polyphagous herbivores are largely uniform across insect taxa, there are various exceptions to this rule. In particular, there are scattered reports of cases in which the relative quality of different hosts differs among larval instars of a single insect species. Such cases are explained either in terms of differences in the susceptibility of different aged larvae to plant defences or, alternatively, age-specific nutritional demands. Here we report the results of experiments that show that young larvae of the polyphagous common heath moth Ematurga atomaria (Lepidoptera: Geometridae) consistently attain higher weights on common heather Calluna vulgaris than bilberry Vaccinium myrtillus, whereas the rank order of these host plants is reversed in the final larval instar. Phytochemical analyses showed that differences in nutrient content of these plants are not likely to explain the observed pattern. Instead, the results are more consistent with the idea that the greater chemical defence of bilberry has a relatively stronger influence on young than old larvae., Helen Vellau, Siiri-Lii Sandre, Toomas Tammaru., and Seznam literatury
The effect of larval body size of Epirrita autumnata (Lepidoptera, Geometridae) on the risk of parasitism was studied in a field experiment. The experiment involved three pairwise exposures of different larval instars to parasitoids. Three hymenopteran species were responsible for most of the parasitism. Parasitism risk was found to be host-instar independent. This result was consistent across parasitoid species and experiments. The results suggest that host use by larval parasitoids cannot constrain selection for larger body size in E. autumnata. However, high mortality due to parasitism may select for a short developmental period (the slow-growth/high-mortality hypothesis), and smaller body sizes as a by-product. A strong selective effect of parasitism on the timing of larval development in E. autumnata is also unlikely. The larger was the host, the larger was the adult size of the parasitoid and the shorter its development time (for one species). We suggest that the lack of a preference-performance linkage in the system studied may be related to the time stress associated with the short phenological window of host vulnerability.
The theory of life history evolution generally predicts a negative across-environment correlation between development time and size at maturity in response to variations in environmental quality. Deviations from this pattern occur under specific circumstances. In particular, organisms may mature both early and at a small size when (1) some ultimate change (e.g. time constraint, resource exhaustion) in the environment precludes further growth, or (2) when there are predictable among-environment differences in mortality rates. The first scenario is frequently documented in insects but evidence for the second possibility is scarce. Here we report a crowding-induced plastic response resulting in a clear positive across-environment correlation between final weight and development time in a geometrid moth. The response was apparent during the entire larval period and in the last larval instar. Crowding also led to increased growth rates. As outbreaks have not been reported for this species it is unlikely that early pupation is a response to anticipated food shortage. Instead, we suggest that crowded larvae may perceive a higher risk of predation, perhaps because they are unable to distinguish conspecifics from potential predators. A possibility for a plastic increase in growth rate implies that the uncrowded larvae grow at submaximal rates, which indicates a cost of high growth rate., Helen Vellau, Toomas Tammaru., and Obsahuje seznam literatury
This study reports the results of a molecular phylogenetic analysis of thirty three species of Ennominae (Lepidoptera: Geometridae). The aim of this analysis was to determine the phylogenetic affinities of 13 European species not previously studied using these methods. Fragments of seven nuclear genes, elongation factor 1 alpha (EF-1α), wingless (wgl), isocitrate dehydrogenase (IDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S5 (RpS5) and expansion segments D1 and D2 of the 28S rRNA gene and fragment of one mitochondrial gene, cytochrome oxidase subunit I (COI), were used. In the analysis using Bayesian phylogenetic inference, original gene sequences of the target species were combined with a larger data matrix of 20 species of Ennominae, used in a previous study (Wahlberg et al., 2010, Mol. Phylogenet. Evol. 55: 929-938). Most notably, the results indicate that the representatives of the genera Cepphis, Plagodis, Pseudopanthera and Selenia form a well-supported monophyletic group which appeared as the sister clade to the rest of the "ennomine" group of tribes. On the other hand, Crocallis and Opisthograptis group together with Ennomos. These results conflict with previous tribal subdivisions of the subfamily pointing to the need to reconsider the concepts of Ennomini and Ourapterygini. Within the tribe Macariini, the genus Macaria appears to be more closely related to Itame (= Speranza) than to Chiasmia clathrata. The emerging phylogenetic tree of Ennominae suggests only a limited phylogenetic inertia in body size making this group a promising target for comparative studies on this central life history trait and its correlates. and Erki Õunap, Juhan Javoiš, Jaan Viidalepp, Toomas Tammaru.
Despite the impact of parasitoids on insect populations being extensively studied, indirect parasitoid-mediated effects remain rarely documented in natural communities. We examined the influence of shared parasitoids on the interactions between two functionally monophagous moths, Nonagria typhae and Archanara sparganii. The moths showed a considerable variation in terms of relative abundance and the degree of phenological synchrony between the species. On average, parasitism levels caused by shared parasitoids did not differ between the two host species. Relative parasitism levels of the two hosts, however, varied considerably among different samples. Percentage parasitism of the scarcer species, A. sparganii, thus could not be fully explained by that of the dominant species, N. typhae. The results indicated that A. sparganii may benefit from the presence of N. typhae. In particular, both low relative density as well as high phenological synchrony with N. typhae reduced parasitism levels in A. sparganii. The case thus indicates the presence of parasitoid-mediated indirect effects between the coexisting herbivores. The patterns of host use observed in this study are consistent with the scenario of frequency-dependent host use caused by changes in parasitoid behavior. Such a host use by parasitoids is suggested to promote numerical stability and coexistence of the moth species in the system studied.
While the study of colour patterns is a traditional subject of evolutionary ecology, there are various hypotheses which suffer from a lack of experimental evidence. One intriguing possibility is a trade-off between warning efficiency and detectability. After a certain size threshold, the detrimental effect of increased detectability can outweigh the benefits of warning colouration. One may thus expect corresponding patterns at the level of ontogenetic development: as juveniles grow, they should first acquire warning colouration, and then lose it again. We analysed this possibility in Orgyia antiqua, a moth species with hairy larvae which are polyphenic with respect to the intensity of warning colouration. We detected a regular change in colour patterns through larval life. Indeed, the larvae tend to display warning colouration at intermediate sizes while dull colours dominate in fully grown larvae. In aviary experiments, we confirmed that the colourful phenotype is the one that causes the strongest aversion in birds. Nevertheless, the effect was rather weak and most of the larvae were still eventually consumed when found. Unexpectedly, for human subjects, the warningly coloured larvae were harder, and not easier to find among natural vegetation, most likely due to the disruptive effect of the aposematic colour pattern. Importantly, the trend was reversed in the largest size class, suggesting that the disruptive colouration loses its advantage as the larva grows. This is consistent with the actual patterns of size-dependence of colouration. We present evidence against an alternative explanation which relates size-related change in colouration to behavioural changes prior to pupation. We conclude that even if the efficiency of the warning effect plays a role in determining the size-dependence of colouration, the pattern may be largely explained by the effects of size-dependent detectability alone.