The phylogenetic relationships of the subgenera Polyommatus and Plebicula, within the Palaearctic butterfly genus Polyommatus, were inferred from a combined analysis of the nuclear marker ITS2 and the barcoding section of the mitochondrial gene COI. Eight major clades were recovered within Polyommatus s. l., which correspond closely to subgenera based on traditional systematics and are of late Pliocene to early Pleistocene origin. Extraordinary chromosomal evolution occurred independently in three of these clades. The disputed position of several species formerly placed in the subgenus Plebicula is clarified. A group of Central Asian species (Bryna) was recovered as a monophyletic clade within Polyommatus s. str. The Kurdistanian endemic P. buzulmavi appears as a sister species to P. icarus. P. celina replaces P. icarus in NW Africa and the Canary Islands, and split from the last common ancestor with P. icarus back in the early Pleistocene.
Monozoic cestodes of the recently amended genus Promonobothrium Mackiewicz, 1968 (Cestoda: Caryophyllidea), parasites of suckers (Cypriniformes: Catostomidae) in North America, are reviewed, with information on their host specificity, distribution and data on the scolex morphology of seven species studied for the first time using scanning electron microscopy (SEM). Evaluation of type and voucher specimens from museum collections and newly collected material of most species indicated the following valid nominal species: Promonobothrium minytremi Mackiewicz, 1968 (type species); P. ingens (Hunter, 1927); P. hunteri (Mackiewicz, 1963); P. ulmeri (Calentine et Mackiewicz, 1966); P. fossae (Williams, 1974) and P. mackiewiczi (Williams, 1974). Rogersus Williams, 1980 with its only species R. rogersi is transferred to Promonobothrium based on morphological and molecular data. Promonobothrium currani sp. n. and P. papiliovarium sp. n. are described from Ictiobus bubalus (Rafinesque) and Ictiobus niger (Rafinesque), and Erimyzon oblongus (Mitchill), respectively. The newly described species can be distinguished from the other congeners by the morphology of the scolex, the position of the anteriormost vitelline follicles and testes, the presence of postovarian vitelline follicles and the shape of the ovary. Molecular phylogenetic analyses of six species based on sequences of the small and large subunits of the nuclear ribosomal RNA genes (ssrDNA, lsrDNA) confirmed the monophyletic status of the genus and supported the validity of the species analysed. A key to identification of all species of Promonobothrium based on morphological characteristics is provided., Mikuláš Oros, Jan Brabec, Roman Kuchta, Anindo Choudhury, Tomáš Scholz., and Obsahuje bibliografii
Forticulcita platana sp. n. and Forticulcita apiensis sp. n. are described from Mugil liza Valenciennes in Argentina, and from Mugil cephalus Linnaeus in Salt Springs, Florida, USA, respectively. Supplemental material relating to the hermaphroditic sac of Forticulcita gibsoni Blasco-Costa, Montero, Balbuena, Raga et Kostadinova, 2009 is provided from a specimen isolated from M. cephalus off Crete, Greece.Forticulcita platana can be distinguished from all species of Forticulcita Overstreet, 1982 except F. gibsoni, based on possessing small pads or gland cells along the hermaphroditic duct. It can be differentiated from that species in possessing a hermaphroditic sac that is one and a half to two times longer than wide rather than one that is approximately three times longer than wide, longer eggs (44-52μm rather than 34-44 μm long) and a shorter post-testicular space (<45% of the body length). Forticulcita apiensis can be differentiated from the other species of Forticulcita in possessing a testis that is shorter than or equal to the pharynx rather than one that is longer than the pharynx. Xiha gen. n. is erected for Dicrogaster fastigatus Thatcher et Sparks, 1958 as Xiha fastigata (Thatcher et Sparks,1958) comb. n., and we tentatively consider Dicrogaster fragilis Fernández Bargiela, 1987 to be Xiha fragilis (Fernández Bargiela, 1987) comb.n. The new genus fits within the concept of Forticulcitinae Blasco-Costa, Balbuena, Kostadinova et Olson, 2009 in having a vitellarium comprised of a single elongate to subspherical mass. Xiha can be differentiated from Forticulcita in having spines lining the hermaphroditic duct, or intromittent organ. A Bayesian inference analysis of partial 28S rDNA sequences of the two New World species of Forticulcita, Xiha fastigata and previously published haploporids places Xiha fastigata within the Forticulcitinae and sister to Forticulcita. Amended diagnos for the subfamily and for Dicrogaster Looss, 1902 are provided., Michael J. Andres, Stephen S. Curran, Thomas J. Fayton, Eric E. Pulis, Robin M. Overstreet., and Obsahuje bibliografii
a1_Coeuritrema Mehra, 1933, previously regarded as a junior subjective synonym of Hapalorhynchus Stunkard, 1922, herein is revised to include Coeuritrema lyssimus Mehra, 1933 (type species), Coeuritrema rugatus (Brooks et Sullivan, 1981) comb. n., and Coeuritrema platti Roberts et Bullard sp. n. These genera are morphologically similar by having a ventral sucker, non-fused caeca, two testes, a pre-testicular cirrus sac, an intertesticular ovary, and a common genital pore that opens dorsally and in the sinistral half of the body. Phylogenetic analysis of the D1-D3 domains of the nuclear large subunit ribosomal DNA (28S) suggested that Coeuritrema and Hapalorhynchus share a recent common ancestor. Coeuritrema is morphologically most easily differentiated from Hapalorhynchus by having ventrolateral tegumental papillae and a definitive metraterm that is approximately 3-7× longer than the uterus. Coeuritrema comprises species that reportedly infect Asiatic softshell turtles (Testudines: Trionychidae) only, whereas Hapalorhynchus (as currently defined) comprises blood flukes that reportedly infect those hosts plus North American musk turtles (Sternotherus Bell in Gray) and mud turtles (Kinosternon Spix), both Kinosternidae, North American snapping turtles (Chelydridae), Asiatic hard-shelled turtles (Geoemydidae) and African pleurodirans (Pelomedusidae). Coeuritrema platti sp. n. infects the blood of Chinese softshell turtles, Pelodiscus sinensis (Wiegmann), cultured in the Da Rang River Basin (Phu Yen Province, Vietnam). It differs from C. lyssimus by having a narrow hindbody (< 1.6× forebody width), ventrolateral tegumental papillae restricted to the hindbody, a short cirrus sac (< 10% of corresponding body length), a transverse ovary buttressing the caeca, a short, wholly pre-ovarian metraterm (~ 10% of corresponding body length), and a submarginal genital pore., a2_It differs from C. rugatus by having small ventrolateral tegumental papillae, testes without deep lobes, and a Laurer's canal pore that opens posterior to the vitelline reservoir and dorsal to the oviducal seminal receptacle. The new species is only the second turtle blood fluke reported from Vietnam., Jackson R. Roberts, Raphael Orélis-Ribeiro, Binh T. Dang, Kenneth M. Halanych, Stephen A. Bullard., and Obsahuje bibliografii
The geometrid genus Cleorodes is shown to belong in the tribe Gnophini (sensu lato) and not in Boarmiini as previously assumed. The conclusion is based on an analysis of morphological characters of a number of genera in these tribes. Moreover, the result is unambiguously supported by a phylogenetic analysis of DNA sequence variation in three nuclear gene regions (segments D1 and D2 of 28S rRNA, and elongation factor 1α) and a mitochondrial gene, cytochrome oxidase-1. The phylogenetic hypothesis is based on a combined sequence data set, which was analysed using direct optimisation.
Myxobolus pseudodispar Gorbunova, 1936 (Myxozoa) is capable of infecting and developing mature myxospores in several cyprinid species. However, M. pseudodispar isolates from different fish show up to 5% differences in the SSU rDNA sequences. This is an unusually large intraspecific difference for myxozoans and only some of the muscle-dwelling myxozoan species possess such a high genetic variability. We intended to study the correlation between the host specificity and the phylogenetic relationship of the parasite isolates, and to find experimental proof for the putatively wide host range of M. pseudodispar with cross-infection experiments and phylogenetic analyses based on SSU rDNA. The experimental findings distinguished 'primary' and less-susceptible 'secondary' hosts. With some exceptions, M. pseudodispar isolates showed a tendency to cluster according to the fish host on the phylogenetic tree. Experimental and phylogenetic findings suggest the cryptic nature of the species. It is likely that host-shift occurred for M. pseudodispar and the parasite speciation in progress might explain the high genetic diversity among isolates which are morphologically indistinguishable., Barbara Forró, Edit Eszterbauer., and Obsahuje bibliografii
a1_Understanding of the diversity of species of Cryptosporidium Tyzzer, 1910 in tortoises remains incomplete due to the limited number of studies on these hosts. The aim of the present study was to characterise the genetic diversity and biology of cryptosporidia in tortoises of the family Testudinidae Batsch. Faecal samples were individually collected immediately after defecation and were screened for presence of cryptosporidia by microscopy using aniline-carbol-methyl violet staining, and by PCR amplification and sequence analysis targeting the small subunit rRNA (SSU), Cryptosporidium oocyst wall protein (COWP) and actin genes. Out of 387 faecal samples from 16 tortoise species belonging to 11 genera, 10 and 46 were positive for cryptosporidia by microscopy and PCR, respectively. All samples positive by microscopy were also PCR positive. Sequence analysis of amplified genes revealed the presence of the Cryptosporidium tortoise genotype I (n = 22), C. ducismarci Traversa, 2010 (n = 23) and tortoise genotype III (n = 1). Phylogenetic analyses of SSU, COWP and actin gene sequences revealed that Cryptosporidium tortoise genotype I and C. ducismarci are genetically distinct from previously described species of Cryptosporidium. Oocysts of Cryptosporidium tortoise genotype I, measuring 5.8-6.9 µm × 5.3-6.5 µm, are morphologically distinguishable from C. ducismarci, measuring 4.4-5.4 µm × 4.3-5.3 µm. Oocysts of Cryptosporidium tortoise genotype I and C. ducismarci obtained from naturally infected Russian tortoises (Testudo horsfieldii Gray) were infectious for the same tortoise but not for Reeve's turtles (Mauremys reevesii [Gray]), common garter snake (Thamnophis sirtalis [Linnaeus]), zebra finches (Taeniopygia guttata [Vieillot]) and SCID mice (Mus musculus Linnaeus)., a2_The prepatent period was 11 and 6 days post infection (DPI) for Cryptosporidium tortoise genotype I and C. ducismarci, respectively; the patent period was longer than 200 days for both cryptosporidia. Naturally or experimentally infected tortoises showed no clinical signs of disease. Our morphological, genetic, and biological data support the establishment of Cryptosporidium tortoise genotype I as a new species, Cryptosporidium testudinis sp. n., and confirm the validity of C. ducismarci as a separate species of the genus Cryptosporidium., Jana Ježková, Michaela Horčičková, Lenka Hlásková, Bohumil Sak, Dana Květoňová, Jan Novák, Lada Hofmannová, John McEvoy, Martin Kváč., and Obsahuje bibliografii
The lung-dwelling nematode Rhabdias engelbrechti sp. n. was found in five of eight examined banded rubber frogs in Limpopo Province, South Africa. The species is differentiated from species of Rhabdias Stiles et Hassall, 1905 occurring in the Afrotropical Realm based on the presence of a globular cuticular inflation at the anterior end, the buccal capsule walls being distinctly divided into anterior and posterior parts, the buccal capsule size (6-9 μm × 16-18 μm), and the body length (3.8-6.1 mm). Rhabdias engelbrechti is the tenth species of the genus found in Afrotropical anurans. Our molecular phylogenetic analysis based on the complete sequences of the ITS region and partial sequences of large subunit (28S) gene of the nuclear ribosomal RNA demonstrates that the new species is more closely related to the Eurasian species Rhabdias bufonis (Schrank, 1788) than to two other species from sub-Saharan Africa represented in the tree. In addition, partial sequences of the mitochondrial protein coding cox1 and ribosomal 12S genes of the new species have shown significant differences from all previously published sequences of these genes from African species of Rhabdias., Yuriy Kuzmin, Ali Halajian, Sareh Tavakol, Wilmien J. Luus-Powell, Vasyl V. Tkach., and Obsahuje bibliografii
Plateumaris constricticollis is a donaciine leaf beetle endemic to Japan, which lives in wetlands and uses Cyperaceae and Poaceae as larval hosts. We analyzed geographic variation in body size and ovipositor dimensions in three subspecies (constricticollis, babai, and toyamensis) in different climatic conditions and on different host plants. In addition, the genetic differentiation among subspecies was assessed using nuclear 28S rRNA gene sequences. The body size of subspecies toyamensis is smaller than that of the other subspecies; mean body size tended to increase towards the northeast. Ovipositor length and width are smaller in subspecies toyamensis than in the other subspecies. Although these dimensions depend on body size, ovipositor length still differed significantly between toyamensis and constricticollis-babai after the effect of body size was removed. Multiple regression analyses revealed that body size and ovipositor size are significantly correlated with the depth of snow, but not temperature or rainfall; sizes were larger in places where the snowfall was greatest. Haplotypes of the 28S rRNA gene sequence were not shared among the subspecies. Subspecies constricticollis and babai each had a unique haplotype, whereas subspecies toyamensis had four haplotypes, indicating differentiation among local populations within toyamensis. The evolution of body and ovipositor size in relation to habitat conditions and host plants is discussed.
Geometric morphometric analyses were conducted on cultured populations of five Micrasterias species (M. crux-melitensis, M. papillifera, M. rotata, M. thomasiana, M. truncata). The patterns in the morphological variation measured using the morphospaces spanned by a PCA of morphometric data for individual populations were compared. In addition, the 18S rDNA sequences of these species are reported. The phenetic comparisons demonstrated the overall great similarity of morphometric indicators extracted from isolated polar lobe data and 18S rDNA genetic distances, and also indicated that the morphometric data of complete semicells were less well correlated with 18S rDNA distances. The phylogenetic analysis revealed clustering of the Micrasterias sequences into two clades, which correspond to qualitative patterns in the morphological variation of isolated polar lobe data. We propose that patterns of variation in the polar lobes of Micrasterias should be used in phenotype analyses of morphologically closely similar or cryptic species.