This study reports the results of a molecular phylogenetic analysis of thirty three species of Ennominae (Lepidoptera: Geometridae). The aim of this analysis was to determine the phylogenetic affinities of 13 European species not previously studied using these methods. Fragments of seven nuclear genes, elongation factor 1 alpha (EF-1α), wingless (wgl), isocitrate dehydrogenase (IDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S5 (RpS5) and expansion segments D1 and D2 of the 28S rRNA gene and fragment of one mitochondrial gene, cytochrome oxidase subunit I (COI), were used. In the analysis using Bayesian phylogenetic inference, original gene sequences of the target species were combined with a larger data matrix of 20 species of Ennominae, used in a previous study (Wahlberg et al., 2010, Mol. Phylogenet. Evol. 55: 929-938). Most notably, the results indicate that the representatives of the genera Cepphis, Plagodis, Pseudopanthera and Selenia form a well-supported monophyletic group which appeared as the sister clade to the rest of the "ennomine" group of tribes. On the other hand, Crocallis and Opisthograptis group together with Ennomos. These results conflict with previous tribal subdivisions of the subfamily pointing to the need to reconsider the concepts of Ennomini and Ourapterygini. Within the tribe Macariini, the genus Macaria appears to be more closely related to Itame (= Speranza) than to Chiasmia clathrata. The emerging phylogenetic tree of Ennominae suggests only a limited phylogenetic inertia in body size making this group a promising target for comparative studies on this central life history trait and its correlates. and Erki Õunap, Juhan Javoiš, Jaan Viidalepp, Toomas Tammaru.