The geometrid genus Cleorodes is shown to belong in the tribe Gnophini (sensu lato) and not in Boarmiini as previously assumed. The conclusion is based on an analysis of morphological characters of a number of genera in these tribes. Moreover, the result is unambiguously supported by a phylogenetic analysis of DNA sequence variation in three nuclear gene regions (segments D1 and D2 of 28S rRNA, and elongation factor 1α) and a mitochondrial gene, cytochrome oxidase-1. The phylogenetic hypothesis is based on a combined sequence data set, which was analysed using direct optimisation.
Analysis of the mitochondrial DNA (mtDNA) control region (CR) was used to examine the dispersal of females of a geometrid moth, Epirrita autumnata, in Fennoscandia. A 542-bp-portion of the CR of 200 individuals from four northern and four southern localities was sequenced. The mtDNA CR of E. autumnata contains a substantial amount of variation as a total of 108 mtDNA haplotypes were observed. Between the northern and the southern localities (~1100 km), there was a moderate level of genetic differentiation (FST = 0.128). The amount of variation in the mtDNA CR of E. autumnata was lower in the north than in the south. The reduction in genetic variability may result from a combination of historical bottlenecks that date back to the post-glacial recolonization of Fennoscandia and, present-day bottlenecks due to the northern E. autumnata populations experiencing repeated outbreaks followed by collapse in population size. On a small spatial scale (0.6-19 km), within the northern and southern areas, no genetic differentiation was detected suggesting ongoing gene flow due to the dispersal of E. autumnata females among the localities. This finding was contrary to our earlier expectation of poor flying ability of E. autumnata females.