Water is one of the most important components of the environment, having a direct effect on the maintenance of life on the Earth. In this paper, analysis of groundwater level variations, water balance and all the parameters included in these quantities, i.e. precipitation, evapotranspiration, surface run-off and subsurface run-off, were performed in the area of the Sudety Mountains for the period of November 2002 - October 2015. The groundwater level variations were computed on the basis of the mean Terrestrial Water Storage (TWS) values determined from Gravity Recovery and Climate Experiment (GRACE) observations and Global Land Data Assimilation System (GLD AS). TWS data have been determined with a spatial resolution of one degree and temporal resolution of one month. According to the results, groundwater level variation can be approximately determined by water balance changes (with reverse sign). Specifically, for the Sudety area a high average stability of total water storage over the period of past 13 years and decline in groundwater level by about 13 cm (approximately 1 cm/year) was detected., Zofia Rzepecka, Monika Birylo, Joanna Kuczynska-Siehien, Jolanta Nastula and Katarzyna Pajak., and Obsahuje bibliografické odkazy
The western part of the Bohemian Massif (Vogtland/West-Bohemia region at the Czech-German border) is characterized by relatively frequent intraplate earthquake swarms and by other manifestations of current geodynamic activity, such as mofettes, mineral and thermal springs. In this study we analyze variations of groundwater level in four hydrological wells in the region during the years 2005-2010. Monitoring during the previous time interval of 2000-2004 is also mentioned and used for comparison. Two of the wells are located in the epicentral region of Nový Kostel, and the other wells are more distant. The time interval includes the 2008 earthquake swarm when all the wells displayed a noticeable drop in the water level. This effect was observed up to epicentral distances of nearly 30 km, which exceeds the distances of hydrological changes observed during previous earthquake swarms. Moreover, it seems that a small rise in the water level preceded the intervals of increased seismic activity, which could represent a certain precursory phenomenon. On the other hand, the hydrological changes in the Nový Kostel area were relatively small, indicating that this epicentral area is not hydrologically linked with the seismically active fault at depth. Consequently, more suitable localities for hydrological monitoring should be sought in a broader vicinity of Nový Kostel., Renata Gaždová, Oldřich Novotný, Jiří Málek, Jan Valenta, Milan Brož and Petr Kolínský., and Obsahuje bibliografii
Local seismicity of the Hronov-Poříčí Fault Zone is studied using two-year continuous seismic data from four seismic stations in the area. Newly developed software for automatic seismic events detection is introduced - it is based on the method used at the Icelandic seismic network. Twelve major local earthquakes are detected, localized and their magnitudes are estimated. Simultaneously, groundwater levels are continuously monitored in three wells in the area. Multiple-filtering method, originally used for processing of broadband and dispersed seismic signals, is modified and used for the frequency-time analysis of the water level data. Dominant tidal influence on the groundwater level variations is shown. Theoretical tidal potential for all three well locations is computed. Groundwater data and tidal potential are bandpass filtered to focus on the semidiurnal periods. Mutual amplitude ratio and phase shift between both quantities are computed. Each of the three wells exhibits different pattern of the groundwater level variations with respect to tides. A distinct change in the phase shift is observed at the VS-3 well in the second half of 2009. In the same time span, increased seismic activity is also observed. However, other two wells do not exhibit any evidence of such phase shift. Detailed groundwater level data analysis does not prove any significant rises or drops of the groundwater levels in 28 day intervals around the detected local events. In contras t, unexplained groundwater level drop in the V-34 well is obser ved 18 hours before the teleseismic Tohoku earthquake, Japan, March 11, 2011, Mw = 9.0., Petr Kolínský, Jan Valenta and Renata Gaždová., and Obsahuje bibliografické odkazy
Results of lysimetric measurements of soil water flow between saturated and unsaturated zone of soil are presented and analyzed. Lysimeters with four different simulated groundwater table below soil surface (50, 100, 150 and 200 cm), five agricultural canopies and four different soil monoliths in, were used and observed during subsequent vegetation periods. From results of measurements it was found, that plant ontogenesis phase together with depth of groundwater table are dominant, followed by soil properties. and Práca obsahuje analýzu výsledkov meraní prítoku vody do koreňovej oblasti pôdy v lyzimetroch s konštantnou polohou hladiny podzemnej vody počas vegetačného obdobia piatich poľnohospodárskych plodín. Hladiny podzemných vôd v lyzimetroch sme udržiavali v štyroch hĺbkach pod povrchom pôdy (50, 100, 150 a 200 cm). Lyzimetre obsahovali monolity štyroch druhov pôd. Z výsledkov meraní vyplýva, že popri dominantnom vplyve hĺbky hladiny podzemnej vody v lyzimetroch na intenzitu prítoku vody z podzemných vôd do koreňovej oblasti pôdy má významnú úlohu ontogenézy rastlín nasledované vplyvom druhu porastu a vlastnosťami pôdy.