We studied growth and photosynthesis of cucumber (Cucumis sativus) seedlings under two vapor-pressure deficit levels (VPD; 0.4 and 3.0 kPa), two salinity levels (0 mM and 34 mM NaCl), and two CO2 concentrations ([CO2]; 400 and 1,000 μmol mol-1). Relative growth rate (RGR) decreased with increasing VPD, but the causal factor differed between salinity levels and CO2 concentrations. Under ambient [CO2], RGR decreased with increasing VPD at low salinity mainly due to decreased leaf area ratio (LAR), and decreased net assimilation rate (NAR) at high salinity. The decrease in intercellular [CO2] (Ci) with decreasing stomatal conductance caused by high VPD did not significantly limit net photosynthetic rate (PN) at low salinity, but PN was potentially limited by Ci at high salinity. At high [CO2], high VPD reduced LAR, but did not affect NAR. This is because the decrease in Ci occurred where slope of PN-Ci curve was almost flat., T. Shibuya, K. Kano, R. Endo, Y. Kitaya., and Obsahuje bibliografii
Diurnal and seasonal fluctuations in water potential (Ψ), stomatal conductance (gs), transpiration rate (E), and net photosynthetic rate (PN) were monitored in Capparis spinosa L., a Mediterranean plant growing during summer, i.e. at the period considered the most stressful for local plant life. In spite of the complete absence of rain, Ψ exhibited a modest drop at midday (-2.7 MPa), but was fully recovered overnight, indicating sufficient access to water sources. The stomata remained open throughout the day and season and the high E resulted in leaf temperatures up to 3.9 °C below air temperature. Additionally, PN of the fully exposed leaves was higher than 25 μmol m-2 s-1 for more than 10 h per day throughout the summer growth period. No symptoms of photooxidative stress were shown, as judged by maximum photosystem 2 photochemical efficiency (Fv/Fm) and the function of xanthophyll cycle. Indeed, diurnal inter-conversions of the xanthophyll cycle components were modest during the summer and a more intensive function of the cycle was only evident during leaf senescence in autumn. In comparison with a semi-deciduous and an evergreen sclerophyll co-existing in the same ecosystem, C. spinosa assimilated up to 3.4 times more CO2 per m2 during its growth period (May to October) and up to 1.8 times more on an annual basis. and E. Levizou, P. Drilias, A. Kyparissis.
The symbiotic association of endophyte fungus, Neotyphodium lolii, and ryegrass improves the ryegrass resistance to drought. This is shown by a 30 % increase in the number of suckers in infected plants (E+), compared to plants lacking endophyte (E-), and by a higher water potential in the E+ than E- plants. The E+ plants have higher stomatal conductance (gs), transpiration rate, net photosynthetic rate (PN), and photorespiratory electron transport rate than the E- plants. The maximal photochemical efficiency (Fv/Fm) and the actual photochemical efficiency (ΦPS2) are not affected by the endophyte fungus. The increase in PN of the E+ plants subjected to water stress was independent from internal CO2 concentration. An increased PN was observed in E+ plants also in optimal water supply. Hence the drought resistance of E+ plants results in increased gs, PN, and photorespiratory electron transport rate. and C. Amalric ... [et al.].
Spartina maritima (Curtis) Fernald, Spartina densiflora Brong, Arthrocnemum perenne (Miller) Moss, and Arthrocnemum fruticosum (L.) Moq are very frequent halophytes on the coasts of SW Europe. The first two are perennial Gramineae with C4 metabolism; the last two are perennial Chenopodiaceae with C3 metabolism. Controlled garden experiments were carried out with the four species to compare their physiological response, i.e., water potential (Ψ), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), intercellular CO2 concentration (Ci), and chlorophyll fluorescence of photosystem (PS) 2 under saline and non-saline conditions. S. maritima behaves as an osmoconformer species, the other three as osmoregulators. In the four species, PN, E, and gs improved following freshwater irrigation. The variations in PN might be related with biochemical changes (which appear not to affect PS2), but not with significant stomatal fluctuations, which are associated with a lower water use efficiency in the case of Arthrocnemum. The species were segregated into two groups (not depending on their C3 or C4 photosynthetic pathway), in relation with the topographic level of this species in natural conditions: the relative responses of PN in S. maritima and A. perenne were lower than those of S. densiflora and A. fruticosum. The salt-tolerance index supports such segregation. S. densiflora demonstrated the best competitive possibilities against salt-tolerant glycophytes, with its more flexible response in saline or brackish environments, which explains its spreading along the rivers draining into the estuaries of the SW Iberian Peninsula. and F. J. J. Nieva ... [et al.].
Influence of supra-optimal concentrations of K on growth, water relations, and photosynthetic capacity in pearl millet under severe water deficit conditions was assessed in a glasshouse. Nineteen-days-old plants of two lines, ICMV-94133 and WCA-78, of Pennisetum glaucum (L.) R.Br. were subjected for 30 d to 235.0, 352.5, and 470.0 mg(K) kg-1(soil) and two water regimes (100 and 30 % field capacity). Increasing K supply did not alleviate the effect of water deficit on the growth of two lines of pearl millet since additional amount of K in the growth medium had no effect on shoot dry mass, relative growth rate, plant leaf area, net assimilation rate, or leaf area ratio, although there was significant effect of drought stress on these variables. Soil moisture had a significant effect on net photosynthetic rate (PN), transpiration rate, stomatal conductance, and water use efficiency of both pearl millet lines, but there was no significant effect of varying K supply on these variables. In WCA-78 an ameliorative effect of increasing supply of K on PN was observed under water deficit. Chlorophyll (Chl) a and b contents increased significantly in both lines with increase in K supply under well watered conditions, but under water deficit they increased only in ICMV-94133. Chl a/b ratios were reduced significantly in WCA-78 with increasing K supply under both watering regimes, but by contrast, in ICMV-94133 this variable was decreased only under water stress. Leaf water potential and osmotic potential of both lines decreased significantly with the imposition of drought. Leaf pressure potential in both lines increased with increase in K supply under water stress. Contents of total free amino acids in the leaves of both pearl millet lines increased significantly with increase in K supply under water stress. Potassium supply had no effect on leaf soluble sugars or soluble proteins. Considerable osmotic adjustment occurred in pearl millet plants experiencing water deficit under high K supply. and M. Ashraf, Ashfaq Ahmad, T. McNeilly.
A gradual reduction in leaf water potential (Ψleaf), net photosynthetic rate (PN), stomatal conductance, and transpiration rate was observed in two drought tolerant (C 306 and K 8027) and two susceptible (RW 893 and 899) genotypes subjected to water stress. The extent of reduction was lower in K 8027 and C 306 and higher in RW 893 and RW 899. Rewatering the plants after 5 d of stress restored PN and other gas exchange traits in all four cultivars. Water stress had no significant effect on variable to maximum fluorescence ratio (Fv/Fm) indicating that water stress had no effect on primary photochemistry of photosystem 2 (PS2). However, water stress reduced the efficiency of excitation energy transfer (F'v/F'm) and the quantum yield of electron transport (ΦPS2). The reduction was more pronounced in susceptible cultivars. Water stress had no significant effect on photochemical quenching, however, the non-photochemical quenching increased by water stress. and D. Subrahmanyam ... [et al.].
Diurnal and seasonal changes in the leaf water potential (Ψ), stomatal conductance (gs), net CO2 assimilation rate (PN), transpiration rate (E), internal CO2 concentration (Ci), and intrinsic water use efficiency (PN/gs) were studied in grapevines (Vitis vinifera L. cv. Touriga Nacional) growing in low, moderate, and severe summer stress at Vila Real (VR), Pinhão (PI), and Almendra (AL) experimental sites, respectively. In VR and PI site the limitation to photosynthesis was caused more by stomatal limitations, while in AL mesophyll limitations were also responsible for the summer decline in PN. and J. M. Moutinho-Pereira ... [et al.].
Maize plants of CPB2 and CPB8 hybrids were kept under water deficit for 22 d. In the CPB8 hybrid, leaf rolling initiated at the 9th d of water deficit period, while in CPB2 hybrid it was at the 15th d. Both hybrids showed leaf rolling initiation at the same leaf water potential, ΨW of -0.480±0.095 MPa. At leaf rolling initiation, the leaf osmotic potential, ΨS was -0.730±0.085 MPa in CPB8 and 0.630±0.110 MPa in CPB2. The leaf temperature and stomatal conductance were higher in CPB8 than in CPB2. Values of leaf ΨW, ribulose-1,5-bisphosphate carboxylase activity, chlorophyll content, and specific leaf area were similar in both hybrids. Phosphoenolpyruvate carboxylase activity and protein content were lower in the CPB2 hybrid than in CPB8. In both hybrids leaf rolling initiation was associated with: (1) higher leaf temperature, with leaf rolling effect related to leaf temperature reduction, and (2) lower leaf ΨS, related to osmotic adjustment as an additional component of drought-tolerance strategy. and D. Fernandez, M. Castrillo.
We measured the diurnal changes in net photosynthetic rate (PN) and stomatal conductance (gs) of the leaves of a liana, Enkleia malaccensis Griff. (Thymelaeaceae), at the canopy level in the lowland tropical rainforest at Pasoh, Peninsular Malaysia. The measurements were made from a canopy walkway system, 30 m from the ground for 3 d in March 2003. PN increased with increasing photosynthetically active radiation (PAR) before noon, though PN was not enhanced by the strong radiation hit in the afternoon. Plotting g s at saturating PAR (>0.5 mmol m-2 s-1) against the vapour pressure deficit (VPD) failed to reveal a significant correlation between VPD and gs, and gs became very low at VPD >2.5 kPa. The relationship between PN and gs was fitted on the same regression line irrespective of measuring day, indicating that this relationship was not influenced by either VPD or leaf temperature (T L). Therefore, in the liana E. malaccensis, an increase in VPD leads to partial stomatal closure and, subsequently, reductions in PN and the midday depression of PN of this plant. and A. C. Tay ... [et al.].
Inactivation of photosynthesis during atmospheric and osmotic (highly concentrated NaCl or sucrose solutions) dehydration was monitored by measurement of chlorophyll fluorescence induction (OIP-phase, Kautsky-curves) in three lichen species. The induction curves were changed in a very similar way by all three treatments. All dehydration effects were rapidly reversible after rehydration. At relatively mild water stress, the rise time to the transient peak Fp was prolonged, and the variable part of fluorescence was diminished. In addition, at severe water stress, a considerable decline of the F0 value was observed. For NaCl treatment this effect started at water potentials <-8.5 MPa in P. aphthosa, <-12 MPa in H. physodes, and <-21 MPa in L. pulmonaria. Above these water potentials, our observations are in agreement with values from desiccation-tolerant algae, higher plants, and lichens, where an inactivation on the photosystem 2 (PS2) donor side has been postulated. At very low water potentials, the decrease in F0 probably monitors changes in the organization of the antenna apparatus of PS2. and M. Jensen, Samira Chakir, G. B. Feige.