In order to understand better Cd resistance in soybean, Dongying wild soybean treated with different Cd concentrations were evaluated. The biomass, chlorophyll (Chl) content, leaf color, Chl a fluorescence parameters, photosynthesis parameters, and Cd contents were determined. Our results showed that when Cd concentration was ≤ 2 kg m-3, no significant decrease in biomass, photosynthetic parameters, and maximal photochemical efficiency of PSII was observed. This indicated that Dongying wild soybean resisted Cd toxic effects under such conditions. In addition, atomic absorption experiment results demonstrated that when Cd concentration was ≤ 0.5 kg m-3, the accumulation of Cd in wild soybean was lower in roots than that in shoots, while the accumulation of Cd was higher in roots than that in shoots when Cd concentration was ≥ 1 kg m-3. Therefore, Dongying wild soybean showed a certain resistance to Cd and could serve as a valuable germplasm resource for improving the breeding of
Cd-resistant soybean., L. Liu, Y. K. Shang, L. Li, Y. H. Chen, Z. Z. Qin, L. J. Zhou, M. Yuan, C. B. Ding, J. Liu, Y. Huang, R. W. Yang, Y. H. Zhou, J. Q. Liao., and Obsahuje bibliografii
The seeds of soybean cv. Aldana and spring wheat cv. Torka were soaked for 24 h in solution of zearalenone [ZEN, 2,4-dihydroxy-6-(10-hydroxy-6-oxo-trans-1-undecenyl)-benzonic acid lactone, 4 mg dm-3] and then they were sown in the pot experiment in an open vegetation hall. The after-effects of ZEN on growth of plants, net photosynthetic (PN) and transpiration (E) rates, stomatal conductance (gs), photochemical efficiency of photosystem II (PSII) and on final seeds yield, were determined. A significant increase of seeds yield was revealed in plants of both cultivars i.e. by 22% and 19% of seed (grain) number and by 28 and 24% of seed (grain) mass, in soybean and in wheat, respectively. The photosynthetic rate (PN) was stimulated during the juvenile and final phase by about 13.6% (average) in soybean plants. During other developmental stages, assimilation of CO2 was retarded. The response of CO2 assimilation in wheat plants was less pronounced as compared to that in soybean, but an increase of PN by over 24% near the final stage of development was observed. The quantum yield of PSII electron transport (ΦPSII) in soybean plants was changed after the treatment of seeds by ZEN similarly as for the rate of CO2, whereas in wheat it continued to gradually increase i.e. during the whole growth period. Changes of ΦPSII both in soybean and in wheat plants, as the response to ZEN treatment, were accompanied with an increase in the efficiency of changes occurring within the antenna (Fv'/Fm') as well as within centres of photochemical reactions (qp). The conclusion is that ZEN can affect plant growth and development in many ways, as well as in the status and functioning of the photosynthetical apparatus. Some of the effects can be very longlasting, as e.g. stimulation of production of seed yield in response to treatment of seeds with this substance. and J. Kościelniak ... [et al.].
a1_We investigated the influence of salinity (0, 25, 50, or 75 mM NaCl) on gas exchange and physiological characteristics of nine citrus rootstocks (Cleopatra mandarin, Carrizo citrange, Macrophylla, Iranian mandarin Bakraii, Rangpur lime, Rough lemon, Sour orange, Swingle citrumelo, and Trifoliate orange) in a greenhouse experiment. Total plant dry mass, total chlorophyll (Chl) content, and gas-exchange variables, such as net photosynthetic rate (PN), stomatal conductance (g s), intercellular CO2 concentration, were negatively affected by salinity. In addition, ion concentrations of Cl- and Na+ increased by salinity treatments. Salinity also increased Mg2+ content in roots and reduced Ca2+ and Mg2+ concentrations in leaves. The K+ concentration in leaves was enhanced at low salinity (25 mM NaCl), whereas it decreased with increasing salinity stress. Salinity caused a decline in K+ contents in roots., a2_The rootstocks showed major differences in the extent of Cl- and Na+ accumulation in leaves and in their ability to maintain the internal concentrations of essential nutrients in response to different salinity. Therefore, in addition to inhibitory effects of high concentrations of Cl- and Na+, an imbalance of essential nutrients may also contribute to the reduction in gas exchange under saline conditions. Higher tolerance of rootstocks to salinity could be associated with the reduction of Cl- and Na+ uptake and transport to leaves, ability to keep higher Chl, gs, PN, and better maintenance of nutrient uptake even under high salinity. We found that Sour orange and Cleopatra mandarin were the rootstocks most tolerant to salinity of all nine studied. In addition, Trifoliate orange, Carrizo citrange, and Swingle citrumelo were the rootstocks most sensitive to salt stress followed by the Rough lemon and Macrophylla that showed a low-to-moderate tolerance, and Rangpur lime and Bakraii, with a moderate-to-high tolerance to high salinity., D. Khoshbakht, A.A. Ramin, B. Baninasab., and Obsahuje bibliografii
We studied growth and photosynthesis of cucumber (Cucumis sativus) seedlings under two vapor-pressure deficit levels (VPD; 0.4 and 3.0 kPa), two salinity levels (0 mM and 34 mM NaCl), and two CO2 concentrations ([CO2]; 400 and 1,000 μmol mol-1). Relative growth rate (RGR) decreased with increasing VPD, but the causal factor differed between salinity levels and CO2 concentrations. Under ambient [CO2], RGR decreased with increasing VPD at low salinity mainly due to decreased leaf area ratio (LAR), and decreased net assimilation rate (NAR) at high salinity. The decrease in intercellular [CO2] (Ci) with decreasing stomatal conductance caused by high VPD did not significantly limit net photosynthetic rate (PN) at low salinity, but PN was potentially limited by Ci at high salinity. At high [CO2], high VPD reduced LAR, but did not affect NAR. This is because the decrease in Ci occurred where slope of PN-Ci curve was almost flat., T. Shibuya, K. Kano, R. Endo, Y. Kitaya., and Obsahuje bibliografii
Melatonin mediates many physiological processes in animals and plants. To examine the potential roles of melatonin in salinity tolerance, we investigated the effects of exogenous melatonin on growth and antioxidant system in cucumber under 200 mM NaCl stress conditions. The results showed that the melatonin-treated plants significantly increased growth mass and antioxidant protection. Under salinity stress, the addition of melatonin effectively alleviated the decrease in the net photosynthetic rate, the maximum quantum efficiency of PSII, and the total chlorophyll content. Our data also suggested that melatonin and the resistance of plants exhibited a concentration effect. The application of 50-150 μM melatonin significantly improved the photosynthetic capacity. Additionally, the pretreatment with melatonin reduced the oxidative damage under salinity stress by scavenging directly H2O2 or enhancing activity of antioxidant enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase) and concentrations of antioxidants (ascorbic acid and glutathione). Therefore, the melatonin-treated plants could effectively enhance their salinity tolerance., L. Y. Wang, J. L. Liu, W. X. Wang, Y. Sun., and Obsahuje seznam literatury
The genetic variation in low temperature sensitivity of eight tomato genotypes grown at suboptimal temperature (19 °C) and at low irradiance (140 pmol m'2 s**) was assessed at the plant, chloroplast and thylakoid membrane levels. Temperature effects on the thylakoid membrane were determined by measuring the maximum fluorescence (Fp) and the maximal fluorescence rise (ADP) of induction traces of leaf discs at decreasing temperatures (30, 28, ... 0 °C). Two discontinuities were found in Fp versus temperature curves: a low temperature break at ca. 12 °C (LTB) and a high temperature break at ca. 22 °C (FITB). Below LTB, sFp and sDP were determined as the temperature induced changes in Fp, respectively ADP. Chloroplast functioning was determined by measuring net CO2 fixation rate (E^) of leaves. Plant performance was determined by measuring the increase in leaf area and sho ot dry mass in time. Correlations between the various parameters were analysed across the genotypic variation found. Chlorophyll (Chl) fluorescence parameters were not correlated with plant performance at suboptimal growth conditions. of leaves was correlated with plant performance, but only at ambient CO2. Effects of stomatal resistance on were large. The Chl fluorescence parameters LTB, sFp and sDP could distinguish between tomato genotypes. Nevertheless, the ranking of the genotypes depended on the specific parameter selected, indicating that each parameter assessed a different aspect of the heterogeneous temperature dependence of Chl fluorescence induction. Their genetic variation suggested that the genotypes differed in the organisation and fimctioning of the thylakoid membrane. These differences were not reflected in of leaves or plant performance.
Seedlings of Bidens cernua L. emerged when mean air temperature was 17.0±1.3 °C. The highest net photosynthetic rate (PN), 13.8±0.8 µmol(CO2) m-2 s-1, was monitored during the vegetative period (May-August), decreasing on an average by 50 % during flowering (August-September) and during fruiting (September-November) phases. The senescence phase (October-November) was characterised by 79, 58, and 18 % decrease of PN, chlorophyll content, and leaf area (LA), respectively, from the maximum values. The time span from seedling emergence to the end of fruiting phase was 202 d. The total plant biomass was 1.58±0.05 g of which 81 % was aboveground plant portion. The total dry mass relative growth rate averaged over the assimilation period was 0.0804±0.0002 kg kg-1 d-1, and it was correlated to both the net assimilation rate (NAR) and the leaf area ratio (LAR). and L. Gratani ... [et al.].
This study developed a method for estimating the leaf area (LA) of muskmelon by using allometry. The best linear measure was evaluated first, testing both a leaf length and width (W). Leaf samples were collected from plants grown in containers of different sizes, leaves of four cultivars, at different develpoment stages, and of different leaf sizes. Two constants of a power equation were determined for relating allometrically a linear leaf measure and LA, in a greenhouse crop. W proved to be a better fit than the leaf length. The maximum attainable W and LA were estimated at Wx = 15.4 cm and LAx = 174.1 cm2. The indicators of fit quality showed that the function was properly related to LA and W as: LA/LAx = Ao × (W/WLx)b; the allometric exponent was b = 1.89, where R 2 = 0.9809 (n = 484), the absolute sum of squares, 0.4584, and the standard deviation of residues, 0.03084, based on relative values calculations (LA/LA x and W/WLx). The relationship was not affected by the cultivar, crop age, leaf size or stress treatment in the seedling stage. The empirical value of allometric constant (A0) was estimated as 0.963. and E. Misle ... [et al.].
Increase in salinity is predicted to affect plant growth and survival in most arid and semiarid regions worldwide. Mitragyna parvifolia (Roxb.) Korth. is an important medicinal tree species distributed throughout the semiarid regions of India; however, it is facing a threat of its extinction in its natural habitat. We examined the effects of increasing NaCl salinity on two-month-old M. parvifolia seedlings grown in an environment-controlled chamber and exposed to soils of different electrical conductivity (EC) caused by NaCl [0-5 (control), 5-10, 10-15, 15-20, and 20-25 dS m-1)] for 85 days. Seedlings transferred to soil of EC >15 dS m-¹ did not survive beyond 1 week. Increase in the Na+ concentration negatively correlated with their height and positively correlated with their water-use efficiency (WUE). However, leaf area, net photosynthetic rate (PN), stomatal conductance, and transpiration rate showed varying correlations and an overall decrease in these parameters compared with the control. At EC of 10-15 dS m-1, the seedling height was reduced by 37% and PN was lowered by 50% compared with those of the control. An increase in the Na+/K+ ratio was observed with increasing salinity. The maximum quantum efficiency of PSII significantly decreased with increasing salinity compared with the control. Our results suggest that the increase in salinity reduced the overall performance of the M. parvifolia seedlings. However, the maintenance of WUE and maximum quantum efficiency of PSII might help M. parvifolia to tolerate NaCl salinity of 15 dS m-1., A. Bidalia, M. Hanief, K. S. Rao., and Obsahuje bibliografii
The aim of this study was to determine the impact of increased copper contents on selected physiological processes in oneyear-old Pinus sylvestris L. needles from a former German timber storage area in Warcino Forest District, a subject to an environmental quality survey. Samples were collected from the area with the high copper content in the soil. The control area was a nearby pine tree stand showing unimpeded growth. The significant growth inhibition was found in dwarf shoots and whole needles, increased water content, and reduced dry mass were also observed. The chlorophyll content was lowered, while 20% higher electrolyte leakage was found. Chlorophyll a fluorescence indicated only higher values of the nonphotochemical quenching in P. sylvestris from the Cu-site. Significant differences were shown in the rate of gas exchange measured by changes in carbon dioxide or oxygen concentration. The intensity of photosynthesis in needles of P. sylvestris from the Cu-site measured by CO2 uptake was considerably higher than that of oxygen production. The rate of respiration in the needles from the Cu-site measured by the amount of released CO2 was higher only by 15%, while according to O2 consumed, the rate increased by 30% in relation to the control. Our results suggest that the copper accumulation in P. sylvestris needles affected the morphology and physiology of the studied organs., K. Możdżeń, T. Wanic, G. Rut, T. Łaciak, A. Rzepka., and Obsahuje bibliografii