Activities of some enzymes related to carbon metabolism were studied in different ecotypes of Rumex nepalensis growing at 1 300, 2 250, and 3 250 m above mean sea level. Activities of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, and glutamine synthetase increased with altitude, whereas activities of malate dehydrogenase, NAD-malic enzyme, and citrate synthase did not show a significant difference with change in altitude. and N. Kumar ... [et al.].
Photosynthesis, chlorophyll (Chl) a fluorescence, and nitrogen metabolism of hawthorn (Crataegus pinnatifida Bge.), subjected to exogenous L-glutamic acid (GLA) (200 mg l-1, 400 mg l-1, and 800 mg l-1) that possibly affect secondary metabolic regulation, were measured. The results indicated that photosynthetic and fluorescence characteristics of hawthorn exhibited positive responses to the application of GLA. Different concentrations of GLA caused an increase in Chl content, net photosynthetic rate
(PN) and stomatal conductance (g s) as well as transpiration rate (E), and improved the carboxylation efficiency (CE), apparent quantum yield (AQY) and maximum carboxylation velocity of Rubisco (Vcmax). Application of GLA could also enhance the maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PSII (Fv/F0), the maximal quantum yield of PSII (Fv/Fm), the probability that an absorbed photon will move an electron into the electron transport chain beyond QA (ΦEo) as well as the performance index on absorption basis (PIABS), but decreased the intercellular CO2 concentration
(Ci) and the minimal fluorescence (F0). Application of GLA also induced an increase in nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) activities, and increased the soluble protein content, leaf nitrogen (N) content and N accumulation in leaves as well as the plant biomass. However, the effects were different among different concentrations of GLA, and 800 mg l-1 GLA was better. This finding suggested that application of GLA is recommended to improve the photosynthetic capacity by increasing the light energy conversion and CO2 transfer as well as the photochemical efficiency of PSII, and enhanced the nitrogen metabolism and growth and development of plants. and C. YU ... [et al.].
The effect of sulphur deprivation and irradiance (180 and 750 µmol m-2 s-1) on plant growth and enzyme activities of carbon, nitrogen, and sulphur metabolism were studied in maize (Zea mays L. Pioneer cv. Latina) plants over a 15-d-period of growth. Increase in irradiance resulted in an enhancement of several enzyme activities and generally accelerated the development of S deficiency. ATP sulphurylase (ATPs; EC 2.7.7.4) and o-acetylserine sulphydrylase (OASs; EC 4.2.99.8) showed a particular and different pattern as both enzymes exhibited maximum activity after 10 d from the beginning of deprivation period. Hence in maize leaves the enzymes of C, N, and S metabolism were differently regulated during the leaf development by irradiance and sulphur starvation. and S. Astolfi, M. G. de Biasi, C. Passera.
In Leymus chinensis, mild water stress (soil moisture 60-65 % of field capacity) had no significant effects on nitrogen metabolism, photosynthesis, and chlorophyll fluorescence. Severe water stress (35-40 %) significantly decreased the activities of nitrate reductase, glutamine synthetase, and glutamate dehydrogenase, net photosynthetic rate, stomatal conductance, transpiration rate, maximal efficiency of photosystem 2 photochemistry (Fv/Fm), actual quantum yield, and photochemical quenching, but increased the endopeptidase activity and malondialdehyde contents. The adverse effects on photosynthesis and N metabolism were markedly greater in reproductive shoots than in vegetative shoots. and Z. Z. Xu, G. S. Zhou.
a1_Different parameters that vary during leaf development may be affected by light intensity. To study the influence of different light intensities on primary leaf senescence, sunflower (Helianthus annuus L.) plants were grown for 50 days under two photon flux density (PFD) conditions, namely high irradiance (HI) at 350 μmol(photon) m-2 s-1 and low irradiance (LI) at 125 μmol(photon) m-2 s-1. Plants grown under HI exhibited greater specific leaf mass referred to dry mass, leaf area and soluble protein at the beginning of the leaf development. This might have resulted from the increased CO2 fixation rate observed in HI plants, during early development of primary leaves. Chlorophyll a and b contents in HI plants were lower than in LI plants in young leaves. By contrast, the carotenoid content was significantly higher in HI plants. Glucose concentration increased with the leaf age in both treatments (HI and LI), while the starch content decreased sharply in HI plants, but only slightly in LI plants. Glucose contents were higher in HI plants than in LI plants; the differences were statistically significant (p<0.05) mainly at the beginning of the leaf senescence. On the other hand, starch contents were higher in HI plants than in LI plants, throughout the whole leaf development period. Nitrate reductase (NR) activity decreased with leaf ageing in both treatments. However, the NR activation state was higher during early leaf development and decreased more markedly in senescent leaves in plants grown under HI. GS activity also decreased during sunflower leaf ageing under both PFD conditions, but HI plants showed higher GS activities than LI plants. Aminating and deaminating activities of glutamate dehydrogenase (GDH) peaked at 50 days (senescent leaves). GDH deaminating activity increased 5-fold during the leaf development in HI plants, but only 2-fold in LI plants., a2_ The plants grown under HI exhibited considerable oxidative stress in vivo during the leaf senescence, as revealed by the substantial H2O2 accumulation and the sharply decrease in the antioxidant enzymes, catalase and ascorbate peroxidase, in comparison with LI plants. Probably, systemic signals triggered by a high PFD caused early senescence and diminished oxidative protection in primary leaves of sunflower plants as a result., L. De la Mata ... [et al.]., and Obsahuje bibliografii