The correlation between baroreflex sensitivity (BRS) and the spectrum component at a frequency of 0.1 Hz of pulse intervals (PI) and systolic blood pressure (SBP) was studied. SBP and PI of 51 subjects were recorded beat-to-beat at rest (3 min), during exercise (0.5 W/kg of body weight, 9 min), and at rest (6 min) after exercise. BRS was determined by a spectral method (a modified alpha index technique). The subjects were divided into groups according to the spectral amplitude of SBP at a frequency of 0.1 Hz. The following limits of amplitude (in mm Hg) were used: very high ≥ 5.4 (VH); high 5.4 > H ≥ 3 (H); medium 3 > M ≥ 2 (M), low < 2 (L). We analyzed the relationships between 0.1 Hz variability in PI and BRS at rest, during the exercise and during recovery in subgroups VH, H, M, L. The 0.1 Hz variability of PI increased significantly with increasing BRS in each of the groups with identical 0.1 Hz variability in SBP. This relationship was shifted to the lower values of PI variability at the same BRS with a decrease in SBP variability. The primary SBP variability increased during exercise. The interrelationship between the variability of SBP, PI and BRS was identical at rest and during exercise. A causal interrelationship between the 0.1 Hz variability of SBP and PI, and BRS was shown. During exercise, the increasing primary variability in SBP due to sympathetic activation was present, but it did not change the relationship between variability in pulse intervals and BRS., N. Honzíková, A. Krtička, Z. Nováková, E. Závodná., and Obsahuje bibliografii
Exercise training-induced cardiac hypertrophy occurs following a program of aerobic endurance exercise training and it is considered as a physiologically beneficial adaptation. To investigate the underlying biology of physiological hypertrophy, we rely on robust experimental models of exercise training in laboratory animals that mimic the training response in humans. A number of experimental strategies have been established, such as treadmill and voluntary wheel running and swim training models that all associate with cardiac growth. These approaches have been applied to numerous animal models with various backgrounds. However, important differences exist between these experimental approaches, which may affect the interpretation of the results. Here, we review the various approaches that have been used to experimentally study exercise training-induced cardiac hypertrophy; including the advantages and disadvantages of the various models., Y. Wang, U. Wisloff, O. J. Kemi., and Obsahuje bibliografii a bibliografické odkazy
Variants within the FTO gene are important determinants of body mass index (BMI), but their role in determination of BMI changes after combined dietary/physical ac tivity intervention is unclear. We have analyzed 107 unrelated overweight non-diabetic Czech females (BMI over 27.5 kg/m2 , age 49.2±12.3 years). FTO variants rs17817449 (first intron) and rs17818902 (third intron) were genotyped. The life style mo dification program (10 weeks) consisted of an age- matched reduction of energy intake and exercise program (aerobic exercise 4 times a week, 60 min each). The mean BMI before intervention was 32.8±4.2 kg/m2 and the mean achieved weight loss was 4.8±3.5 kg (5.3±3.5 %, max. -15.5 kg, min. +2.0 kg, p<0. 01). No significant association between BMI decrease and FTO variants was found. Also waist-to-hip ratio, body composition (body fat, water, active tissue), lipid parameters (total, LDL and HDL cholesterol, triglycerides) glucose and hsCRP change s were independent on FTO variants. FTO variants rs17817449 and rs17818902 are not associated with BMI changes after combined short time dietary/physical activity intervention in overweight females., D. Dlouhá ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The purpose of the present study was to examine whether the level of oxygen uptake (V.o2) at the onset of decrement-load exercise (DLE) is lower than that at the onset of constant-load exercise (CLE), since power output, which is the target of V.o2 response, is decreased in DLE. CLE and DLE were performed under the conditions of moderate and heavy exercise intensities. Before and after these main exercises, previous exercise and post exercise were performed at 20 watts. DEL was started at the same power output as that for CLE and power output was decreased at a rate of 15 watts per min. V.o2 in moderate CLE increased at a fast rate and showed a steady state, while V.o2 in moderate DLE increased and decreased linearly. V.o2 at the increasing phase in DLE was at the same level as that in moderate CLE. V.o2 immediately after moderate DLE was higher than that in the previous exercise by 98±77.5 ml/min. V.o2 in heavy CLE increased rapidly at first and then slowly increased, while V.o2 in heavy DLE increased rapidly, showing a temporal convexity change, and decreased linearly. V.o2 at the increasing phase of heavy DLE was the same level as that in heavy CLE. V.o2 immediately after heavy DLE was significantly higher than that in the previous exercise by 156±131.8 ml/min. Thus, despite the different modes of exercise, V.o2 at the increasing phase in DLE was at the same level as that in CLE due to the effect of the oxygen debt expressed by the higher level of V.o2 at the end of DLE than that in the previous exercise., T. Yano, H. Ogata, R. Matsuura, T. Arimitsu, T. Yunoki., and Obsahuje bibliografii a bibliografické odkazy
The cornerstone of cardiovascular risk management is lifestyle intervention including exercise which could exert favorable impact also in renal transplant recipients. Nevertheless, reliable assessment of the effect of lifestyle interventions is complicated and the available data in this population are not consistent. The aim of the study was to evaluate the effect of physical activity on selected laboratory markers of vascular health including circulating stem cells, endothelial progenitor cells, microparticles, and plasma asymmetric dimethyl arginine in renal transplant recipients. Nineteen men and 7 women were recruited in 6-month program of standardized and supervised exercise. Control group consisted of 23 men and 13 women of similar age and body mass i ndex not included into the program. One year after the transplantation, the main difference between intervention and control group was found in the change of endothelial progenitor cells (p=0.006). Surprisingly, more favorable change was seen in the contro l group in which endothelial progenitor cells significantly increased compared to the intervention group. The explanation of this finding might be a chronic activation of reparative mechanisms of vascular system in the population exposed to multiple risk factors which is expressed as relatively increased number of endothelial progenitor cells. Therefore, their decrease induced by exercise might reflect stabilization of these processes., J. Piťha, I. Králová Lesná, P. Stávek, A. Mahrová, J. Racek, A. Sekerková, V. Teplan, M. Štollová., and Obsahuje bibliografii
We evaluated the effects of exercise on the vascular constrictor responses to α-adrenergic stimulation in the db/db mice. Twenty male db/db and their age-matched wild-type (WT) mice were exercised (1 hour/day, five days a week). Mice were anesthetized 7 weeks later, thoracic aortae were mounted in wire myograph and constrictor responses to phenylephrine (PE, 1 nM-10 μM) were obtained. Citrate synthase activity measured in the thigh adductor muscle was significantly increased in db/db mice that were exercise trained. Maximal force generated by PE was markedly greater in db/db aortae and exercise did not attenuate this augmented contractile response. Vessels were incubated with inhibitors of nitric oxide synthase (L-NAME, 200 μM), endothelin receptors (bosentan, 10 μM), protein kinase C (PKC) (calphostin C, 5 μM), cyclooxygenase (indomethacin, 10 μM) or Rho-kinase (Y-27632, 0.1 μM). Only calphostin-C normalized the augmented PE-induced constriction in db/db and db/db- exercised mice to that observed in WT (p<0.05). Cumulative additions of indolactam, a PKC activator, induced significantly greater constrictor responses in aortic rings of db/db mice compared to WT and exercise did not affect this response. Our data suggest that the augmented vasoconstriction observed in the aorta of db/db mice is likely due to increased PKC activity and that exercise do not ameliorate this increased PKC-mediated vasoconstriction., M. Khazaei, F. Moien-Afshari, T. J. Kieffer, I. Laher., and Obsahuje bibliografii a bibliiografické odkazy
In the present study we aimed to evaluate whether oxidative stress and inflammation induced by strenuous exercise affect glycocalyx integrity and endothelial function. Twenty one young, untrained healthy men performed a maximal incremental cycling exercise - until exhaustion. Markers of glycocalyx shedding (syndecan-1, heparan sulfate and hyaluronic acid), endothelial status (nitric oxide and prostacyclin metabolites - nitrate, nitrite, 6-keto-prostaglandin F1α), oxidative stress (8-oxo-2’- deoxyguanosine) and antioxidant capacity (uric acid, nonenzymatic antioxidant capacity) as well as markers of inflammation (sVCAM-1 and sICAM-1) were analyzed in venous blood samples taken at rest and at the end of exercise. The applied strenuous exercise caused a 5-fold increase in plasma lactate and hypoxanthine concentrations (p<0.001), a fall in plasma uric acid concentration and non-enzymatic antioxidant capacity (p<10−4), accompanied by an increase (p=0.003) in sVCAM-1 concentration. Plasma 6-keto-prostaglandin F1α concentration increased (p=0.006) at exhaustion, while nitrate and nitrite concentrations were not affected. Surprisingly, no significant changes in serum syndecan-1 and heparan sulfate concentrations were observed. We have concluded, that a single bout of severe-intensity exercise is well accommodated by endothelium in young, healthy men as it neither results in evident glycocalyx disruption nor in the impairment of nitric oxide and prostacyclin production., J. Majerczak, K. Duda, S. Chlopicki, G. Bartosz, A. Zakrzewska, A. Balcerczyk, R. T. Smoleński, J. A. Zoladz., and Obsahuje bibliografii
The aging process is associated with a decline in mitochondrial functions. Mitochondria dysfunction is involved in initiation and progression of many health problems including neuromuscular, metabolic and cardiovascular diseases. It is well known that endurance exercise improves mitochondrial function, especially in the elderly. However, recent studies have demonstrated that resistan ce training lead also to substantial increases in mitochondrial function in skeletal muscle. A comprehensive understanding of the cellular mechanisms involved in the skeletal muscle mitochondrial adaptations to exercise training in healthy elderly subjects, can help practitioners to design and prescribe more effective exercise trainings., M. M. Ziaaldini, S. R. A. Hosseini, M. Fathi., and Obsahuje bibliografii