The purpose of the present study was to examine whether the level of oxygen uptake (V.o2) at the onset of decrement-load exercise (DLE) is lower than that at the onset of constant-load exercise (CLE), since power output, which is the target of V.o2 response, is decreased in DLE. CLE and DLE were performed under the conditions of moderate and heavy exercise intensities. Before and after these main exercises, previous exercise and post exercise were performed at 20 watts. DEL was started at the same power output as that for CLE and power output was decreased at a rate of 15 watts per min. V.o2 in moderate CLE increased at a fast rate and showed a steady state, while V.o2 in moderate DLE increased and decreased linearly. V.o2 at the increasing phase in DLE was at the same level as that in moderate CLE. V.o2 immediately after moderate DLE was higher than that in the previous exercise by 98±77.5 ml/min. V.o2 in heavy CLE increased rapidly at first and then slowly increased, while V.o2 in heavy DLE increased rapidly, showing a temporal convexity change, and decreased linearly. V.o2 at the increasing phase of heavy DLE was the same level as that in heavy CLE. V.o2 immediately after heavy DLE was significantly higher than that in the previous exercise by 156±131.8 ml/min. Thus, despite the different modes of exercise, V.o2 at the increasing phase in DLE was at the same level as that in CLE due to the effect of the oxygen debt expressed by the higher level of V.o2 at the end of DLE than that in the previous exercise., T. Yano, H. Ogata, R. Matsuura, T. Arimitsu, T. Yunoki., and Obsahuje bibliografii a bibliografické odkazy
The aim of the present study was to determine whether the oxygenation level in an inactive muscle during an incremental exercise test, determined by near-infrared spectroscopy, influences the maximal oxygen uptake (Vo2max). The oxygenation level at the onset of incremental exercise was higher than that at rest and started to decrease at a high power output. A minimal level was observed at exhaustion during incremental exercise. Vo2 increased linearly after some delay, and the rate of increase in Vo2 was greater at a higher power output. Heart rate increased linearly after the time delay, and the rate of increase in heart rate did not change. There was a significant correlation between Vo2max and oxygenation level in inactive muscle at exhaustion (r = -0.89). We therefore concluded that the oxygenation level in inactive muscle at exhaustion during incremental exercise is associated with an individual difference in Vo2max.