The aim of the present study was to compare the oscillations of oxygenation in skeletal muscle between early and late phases in prolonged exercise. During prolonged exercise at 60 % of peak oxygen uptake ( o2) for 60 min and at rest, oxygenated hemoglobin/myoglobin (Hb/MbO2) and total Hb/Mb (THb/Mb) were determined by near-infrared spectroscopy in the vastus lateralis. Power spectra density (PSD) for the difference between Hb/MbO2 and THb/Mb (−HHb/MbO2: deoxygenation) was obtained by fast Fourier transform at rest, in the early phase (1-6 min) and in the late phase (55-60 min) in exercise. Peak PSD in the early phase was significantly higher than that at rest. There were at least three peaks of PSD in exercise. The highest peak was a band around 0.01 Hz, the next peak was a band around 0.04 Hz, and the lowest peak was a band around 0.06 Hz. PSD in the early phase was not significantly different from that in the late phase in exercise. Heart rate (HR) showed a continuous significant increase from 3 min in exercise until the end of exercise. Skin blood flow (SBF) around the early phase was significantly lower than that around the late phase. It was concluded that oscillation of oxygenation in the muscle oxygen system in the early phase is not different from that in the late phase in prolonged exercise despite cardiovascular drift., T. Yano, ... [et al.]., and Obsahuje seznam literatury
The purpose of the present study was to examine whether the level of oxygen uptake (V.o2) at the onset of decrement-load exercise (DLE) is lower than that at the onset of constant-load exercise (CLE), since power output, which is the target of V.o2 response, is decreased in DLE. CLE and DLE were performed under the conditions of moderate and heavy exercise intensities. Before and after these main exercises, previous exercise and post exercise were performed at 20 watts. DEL was started at the same power output as that for CLE and power output was decreased at a rate of 15 watts per min. V.o2 in moderate CLE increased at a fast rate and showed a steady state, while V.o2 in moderate DLE increased and decreased linearly. V.o2 at the increasing phase in DLE was at the same level as that in moderate CLE. V.o2 immediately after moderate DLE was higher than that in the previous exercise by 98±77.5 ml/min. V.o2 in heavy CLE increased rapidly at first and then slowly increased, while V.o2 in heavy DLE increased rapidly, showing a temporal convexity change, and decreased linearly. V.o2 at the increasing phase of heavy DLE was the same level as that in heavy CLE. V.o2 immediately after heavy DLE was significantly higher than that in the previous exercise by 156±131.8 ml/min. Thus, despite the different modes of exercise, V.o2 at the increasing phase in DLE was at the same level as that in CLE due to the effect of the oxygen debt expressed by the higher level of V.o2 at the end of DLE than that in the previous exercise., T. Yano, H. Ogata, R. Matsuura, T. Arimitsu, T. Yunoki., and Obsahuje bibliografii a bibliografické odkazy
Time delay in the mediation of ventilation (VE) by arterial CO2 pressure (PaCO2) was studied during recovery from short impulse-like exercises with different work loads of recovery. Subjects performed two tests including 10-s impulse like exercise with work load of 200 watts and 15-min recovery with 25 watts in test one and 50 watts in test two. V . E, end tidal CO2 pressure (PETCO2) and heart rate (HR) were measured continuously during rest, warming up, exercise and recovery. PaCO2 was estimated from PETCO2 and tidal volume (VT). Results showed that predicted arterial CO2 pressure (PaCO2 pre) increased during recovery in both tests. In both tests, VE increased and peaked at the end of exercise. VE decreased in the first few seconds of recovery but started to increase again. The highest correlation coefficient between PaCO2 pre and V . E was obtained in the time delay of 7 s (r=0.854) in test one and in time delays of 6 s (r=0.451) and 31 s (r=0.567) in test two. HR was significantly higher in test two than in test one. These results indicate that PaCO2 pre drives VE with a time delay and that higher work intensity induces a shorter time delay., R. Afroundeh, T. Arimitsu, R. Yamanaka, C. S. Lian, K. Shirakawa, T. Yunoki, T. Yano., and Obsahuje bibliografii
The purpose of this study was to examine how oxygen uptake (V.o2) in decrement-load exercise (DLE) is affected by changing rate of decrease in power output. DLE was performed at three different rates of decrease in power output (10, 20 and 30 watts ・min-1: DLE10, DLE20 and DLE30, respectively) from power output corresponding to 90 % of peak V.o2. V.o2 exponentially increased and then decreased, and the rate of its decrease was reduced at low power output. The values of V.o2 in the three DLE tests were not different for the first 2 min despite the difference in power output. The relationship between V.o2 and power output below 50 watts was obtained as a slope to estimate excessive V.o2 (ex-V.o2) above 50 watts. The slopes were 10.0±0.9 for DLE10, 9.9±0.7 for DLE20 and 10.2±1.0 ml ・min-1 ・ watt-1 for DLE30. The difference between V.o2 estimated from the slope and measured V.o2 was defined as ex-V.o2. The peak value of ex-V.o2 for DLE10 (189±116 ml ・min-1) was significantly greater than those for DLE20 and for DLE30 (93±97 and 88±34 ml ・min-1). The difference between V.o2 in DLE and that in incremental-load exercise (ILE) below 50 watts (ΔV.o2) was greater in DLE 30 and smallest in DLE10. There were significant differences in ΔV.o2 among the three DLE tests. The values of ΔV.o2 at 30 watts were 283±152 for DLE10, 413±136 for DLE20 and 483±187 ml ・min-1 for DLE30. Thus, a faster rate of decrease in power output resulted in no change of V.o2 at the onset of DLE, smaller ex-V.o2 and greater ΔV.o2. These results suggest that V.o2 is disposed in parallel in each motor unit released from power output or recruited in DLE., T. Yano, T. Yunoki, R. Matsuura, T. Arimitsu, T. Kimura., and Obsahuje bibliografii a bibliografické odkazy
To determine the relationship between hyperventilation and recovery of blood pH during recovery from a heavy exercise, short-term intense exercise (STIE) tests were performed after human subjects ingested 0.3 g · kg-1 body mass of either NaHCO3 (Alk) or CaCO3 (Pla). Ventilation (V.E) - CO2 output (V.co2) slopes during recovery following STIE were significantly lower in Alk than in Pla, indicating that hyperventilation is attenuated under the alkalotic condition. However, this reduction of the slope was the result of unchanged V.E and a small increase in V.co 2.A significant correlation between V.E and blood pH was found during recovery in both conditions. While there was no difference between the V.E - pH slopes in the two conditions, V.E at the same pH was higher in Alk than in Pla. Furthermore, the values of pH during recovery in both conditions increased toward the preexercise levels of each condition. Thus, although V.E - V.co 2 slope was decreased under the alkalotic condition, this could not be explained by the ventilatory depression attributed to increase in blood pH. We speculate that hy perventilation after the end of STIE is determined by the V.E - pH relationship that was set before STIE or the intensity of the exercise performed., T. Yunoki ... [et al.]., and Obsahuje seznam literatury
The aim of this study was to determine whether excessive oxygen uptake (V.o2) occurs not only during exercise but also during recovery after heavy exercise. After previous exercise at zero watts for 4 min, the main exercise was performed for 10 min. Then recovery exercise at zero watts was performed for 10 min. The main exercises were moderate and heavy exercises at exercise intensities of 40 % and 70 % of peak V.o2, respectively. V.o2 kinetics above zero watts was obtained by subtracting V.o2 at zero watts of previous exercise (ΔV.o2). ΔV.o2 in moderate exercise was multiplied by the ratio of power output performed in moderate and heavy exercises so as to estimate the ΔV.o2 applicable to heavy exercise. The difference between ΔV.o2 in heavy exercise and ΔV.o2 estimated from the value of moderate exercise was obtained. The obtained V.o2 was defined as excessive V.o2. The time constant of excessive V.o2 during exercise (1.88±0.70 min) was significantly shorter than that during recovery (9.61±6.92 min). Thus, there was excessive V.o2 during recovery from heavy exercise, suggesting that O2/ATP ratio becomes high after a time delay in heavy exercise and the high ratio continues until recovery., T. Zano, T. Yunoki, R. Matsuura, T. Arimitsu, T. Kimura., and Obsahuje bibliografii a bibliografické odkazy
The purpose of the present study was to examine whether excessive CO2 output (V.co2excess) is dominantly attributable to hyperventilation during the period of recovery from repeated cycling sprints. A series of four 10-sec cycling sprints with 30-sec passive recovery periods was performed two times. The first series and second series of cycle sprints (SCS) were followed by 360-sec passive recovery periods (first recovery and second recovery). Increases in blood lactate (ΔLa) were 11.17±2.57 mM from rest to 5.5 min during first recovery and 2.07±1.23 mM from the start of the second SCS to 5.5 min during second recovery. CO2 output (V.co2) was significantly higher than O2 uptake (V.o2) during both recovery periods. This difference was defined as V.co2excess. V.co2excess was significantly higher during first recovery than during second recovery. V.co2excess was added from rest to the end of first recovery and from the start of the second SCS to the end of second recovery (CO2excess). ΔLa was significantly related to CO2excess (r=0.845). However, ventilation during first recovery was the same as that during second recovery. End-tidal CO2 pressure (PETco2) significantly decreased from the resting level during the recovery periods, indicating hyperventilation. PETco2 during first recovery was significantly higher than that during second recovery. It is concluded that V.co2excess is not simply determined by ventilation during recovery from repeated cycle sprints., T. Yano ... [et al.]., and Obsahuje seznam literatury
Inactive forearm muscle oxygenation has been reported to begin decreasing from the respiratory compensation point (RCP) during ramp leg cycling. From the RCP, hyperventilation occurs with a decrease in arterial CO2 pressure (PaCO2). The aim of this study was to determine which of these two factors, hyperventilation or decrease in PaCO2, is related to a decrease in inactive biceps brachii muscle oxygenation during leg cycling. Each subject (n = 7) performed a 6-min two-step leg cycling. The exercise intensity in the first step (3 min) was halfway between the ventilatory threshold and RCP (170±21 watts), while that in the second step (3 min) was halfway between the RCP and peak oxygen uptake (240±28 watts). The amount of hyperventilation and PaCO2 were calculated from gas parameters. The average cross correlation function in seven subjects between inactive muscle oxygenation and amount of hyperventilation showed a negative peak at the time shift of zero (r = -0.72, p<0.001), while that between inactive muscle oxygenation and calculated PaCO2 showed no peak near the time shift of zero. Thus, we concluded that decrease in oxygenation in inactive arm muscle is closely coupled with increase in the amount of hyperventilation., H. Ogata, T. Arimitsu, R. Matsuura, T. Yunoki, M. Horiuchi, T. Yano., and Obsahuje bibliografii a bibliografické odkazy
We investigated ventilation (V . E) control factors during recovery from light impulse-like exercise (100 watts) with a duration of 20 s. Blood ions and gases were measured at rest and during recovery. V . E, end tidal CO2 pressure (PETCO2) and respiratory exchange ratio (RER) were measured continuously during rest, exercise and recovery periods. Arterial CO2 pressure (PaCO2 pre) was estimated from PETCO2 and tidal volume (VT). RER at 20 s of exercise and until 50 s during recovery was significantly lower than RER at rest. Despite no change in arterialized blood pH level, PaCO2 pre was significantly higher in the last 10 s of exercise and until 70 s during recovery than the resting value. V . E increased during exercise and then decreased during recovery; however, it was elevated and was significantly higher than the resting value until 155 s (p<0.05). There was a significant relationship between V . E and PaCO2 pre during the first 70 s of recovery in each subject. The results suggest that PaCO2 drives V . E during the first 70 s of recovery after light impulse-like exercise. Elevated V . E in the interval from 70 s until 155 s during recovery might be due to neural factors., R. Afroundeh, ... [et al.]., and Obsahuje seznam literatury