Chromosome numbers are given for 16 taxa (and one interspecific hybrid) of Hieracium subgen. Pilosella originating from Central Europe: H. apatelium Nägeli et Peter (2n = 45), H. aurantiacum L. (2n = 36), H. bauhini Besser (2n = 36, 45, 54), H. brachiatum Bertol. ex DC. (2n = 45, 48, 63, 72), H. densiflorum Tausch (2n = 36), H. echioides Lumn. (2n = 18, 27, 36), H. floribundum Wimm. et Grab. (2n = 36, 45), H. glomeratum Froel. (2n = 36, 45), H. guthnickianum Hegetschw. (2n = 54), H. lactucella Wallr. (2n = 18), H. onegense (Norrl.) Norrl. (2n = 18), H. pilosella L. (2n = 36, 45, 54), H. piloselliflorum Nägeli et Peter (2n = 36, 45), H. piloselloides Vill. (2n = 36), H. rothianum Wallr. (2n = 36), H. schultesii F. W. Schultz (2n = 45), and the hybrid H. floribundum × H. aurantiacum (2n = 36). New chromosome numbers are reported for H. brachiatum and H. floribundum. The octoploid cytotype (2n = 72), recorded in H. brachiatum, is the highest ploidy level ever found in plants from the subgen. Pilosella originating from the field. Aneuploidy, rare in this subgenus in Europe, occurs in this hybridogenous species as well: it was recorded in one plant (2n = 48) collected in a hybrid swarm H. pilosella × H. bauhini. The breeding system in H. bauhini, H. brachiatum, H. densiflorum, H. echioides, H. pilosella, H. piloselloides, and H. rothianum was studied. The sexual reproduction of pentaploid H. pilosella is a new observation: it means an increase of diversity in possible reproduction modes of those cytotypes having odd chromosome numbers.
Experimentally produced interspecific hybrids between four Central European species of Rorippa (Brassicaceae), which are wide-spread in the Czech and Slovak Republics (allogamic R. amphibia, R. austriaca, R. sylvestris and autogamic R. palustris), were studied. The hybrid between the allogamic tetraploid species R. amphibia and R. sylvestris can produce hybrid swarms when they occur sympatrically with the parental species. The most plausible mode of formation of the tetraploid hybrid swarms introgressed by diploid R. austrica in nature was confirmed: The chromosome numbers of the offspring resulted from the controlled pollination of the triploid experimental hybrid R. austriaca × R. sylvestris mostly tended to the tetraploid level. Even healthy tetraploid plants, with high quality pollen, developed in the second generation after open pollination of the experimental triploid R. amphibia × R. austriaca. Plants with nearly tetraploid or tetraploid chromosome numbers and sufficiently fertile pollen gave rise to fully fertile tetraploid hybrid swarms, even without the presence of tetraploid R. austriaca. Failure of most experimental crosses of the autogamous tetraploid R. palustris with allogamous species (totally sterile F1 acquired only in combination R. austriaca × R. palustris) indicated that this species is unlikely to have participated in the formation of hybrid swarms in nature.
Chromosome numbers for 239 plants from 84 localities in the Czech Republic, Slovakia, Hungary, Germany and Poland are given. Most of the populations were pentaploid (2n = 45), while hexaploid (2n = 54) and tetraploid (2n = 36) populations were rarer. A long marker chromosome was observed in plants from 8 pentaploid populations. Tetraploid plants occurred mainly in Slovakia and Hungary. In the Czech Republic and Germany, most populations were pentaploid. Hexaploid populations (2n = 54) were rare but scattered over the entire study area. The co-occurrence of two different cytotypes was documented at 7 sites. Most tetraploids were fully sexual and only a few tetraploid plants from Poland were apomictic; pentaploid and hexaploid plants were apomictic. Two morphotypes of H. bauhini were distinguished: tetraploid and hexaploid plants from Slovakia and Hungary, and some hexaploid plants from the Czech Republic were assigned to the H. magyaricum group, while tetraploids and hexaploids from the Czech Republic and Poland plus all pentaploids belong to the H. bauhini group.
Chromosome numbers of taxa belonging to the Myosotis alpestris group are provided and/or confirmed. A chromosome count is reported for the first time for M. olympica. A new ploidy level (2n = 24) was revealed within M. stenophylla for which previously only tetraploid cytotypes are reported. Myosotis stenophylla is identified for the first time from Greece. Previous chromosome counts for M. ambigens, M. alpestris, M. atlantica, M. corsicana, M. lithospermifolia, and M. suaveolens are confirmed based on plants originating from karyologically poorly investigated parts of the distribution areas of this polyploid complex.
Populations of silver Prussian carp (Carassius gibelio) are known to exhibit different ploidy levels among their individuals. No consistent information is available regarding chromosome number of triploid biotype. Generally diploids have 100 chromosomes while triploids have 150-160 chromosomes. The karyotype of the C. gibelio triploid biotype is characterized by a variable number of small chromosomal elements called supernumerary chromosomes. Here we report the results of a reproduction experiment between a diploid male and triploid female with respect to chromosome numbers of the parents and their offspring. Thirty metaphases of both parents and fifteen individuals of the offspring were investigated. We found variability in chromosome numbers among analysed offspring with a fluctuation from 150 to 159. In comparison, the chromosome numbers of male and female individuals were found to be 100 and 159 respectively. Our results show a high chromosomal plasticity of the Carassius gibelio triploid biotype.