We examined condition factor, hepatosomatic index and stomach fullness in brown trout to study if feeding intensity can be related to fish condition. Trout were collected at three locations during the summer in temperate rivers (Galicia, NW Spain). Our findings suggest that the feeding intensity is inversely related with the fish condition because the stomach fullness decreases with fish age and size and the condition factor is the lowest in young-of-the-year (YOY). In general, no significant differences among age classes were found in the hepatosomatic index, except in one river (the River Lengüelle) in which YOY shows the highest value. The high
feeding intensity of YOY during summer could be related with the increases in fish condition and survival in the later autumn and winter.
Cardiopulmonary adaptation to chronic hypoxia was compared in rats exposed to simulated high altitude (barochamber, 8 h per day, 5 days a week, stepwise up to 7000 m, a total of 24 exposures) either from the 4th day or the 12th week of postnatal life. Pulmonary hypertension and right ventricular (RV) enlargement were comparable in both age groups. Whereas in young hypoxic animals the individual values of RV weight increased linearly with a rise of RV pressure (r=0.72), no significant correlation was found in adult rats. Chronic hypoxia increased the concentration of cardiac collagenous proteins; this effect was more pronounced in adult animals. On the other hand, the collagen l/lll ratio was markedly lower in young rats suggesting increased synthesis of collagen III in this age group. A protective effect of adaptation, i.e. increased cardiac resistance to acute hypoxic injury, was similar in both age groups and persisted even 4 months after removal of animals from the hypoxic atmosphere.
The aim of this work was to evaluate ontogeny of reactive nitrogen species (RNS) production by peripheral blood phagocytes in pig. Pig fetuses (55 and 92 days of gestation) and postnatal piglets (1, 3, 8, 17, 31 and 41 days after birth) were used. RNS production was measured by fluorescent probes diaminofluorescein-diacetate (DAF-FMDA) and dichloro-fluorescein-diacetate (H2DCFDA). Levels of nitration of cell proteins were established by immunofluorescent detection of nitrotyrosine. Levels of plasma nitrites/nitrates were detected spectrophotometrically by Griess reaction. Nitric oxide production measured by DAF-FMDA in neutrophils decreased during postnatal life. Spontaneous RNS measured by H2DCFDA decreased from 55th day of gestation to the 41st day of life. Phorbol-12-myristate-13-acetate activated production decreased during postnatal life. Production of NO measured by DAF-FMDA in macrophages decreased from the 1st to 41st day after birth. RNS production measured by H2DCFDA in monocytes did not show any significant changes during ontogeny. The level of nitrotyrosine significantly decreased from the 3rd to 17th day. Levels of plasma nitrites/nitrates gradually decreased from the 55th day of gestation to the 41st day after birth. A temporary increase in all parameters occurred after weaning, but without any significance. In conclusion, RNS production has a decreasing trend during ontogeny and is transiently upregulated after weaning., P. Zelníčková, M. Faldyna, J. Ondráček, H. Kovářů, F. Kovářů., and Obsahuje bibliografii a bibliografické odkazy
The article gives an overview of developmental aspects of the ontogeny of pain both in experimental models and in children. The whole article is devoted to the ontogenesis in pain perception and the possible influence on it. The role of endogenous opioids on the development of pain and other important substances such as serotonin, nerve growth factor (NGF) and nicotine are mentioned. There are also important differences of the ontogenesis of thermal and mechanical nociceptive stimulation. The physiological and pathophysiological findings are the backgrounds for principles of treatment, taking into account the special status of analgesics during ontogeny. In particular there are mentioned the special effects of endogenous opioids and especially morphine. It describes the role of vitamin D and erythropoietin during the development of pain perception. This article also mentioned the critical developmental periods in relation to the perception of pain. The attention is paid to stress and immunological changes during the ontogeny of pain. Another important role is played by microglia. The work is concluded by some statements about the use of physiological and pathophysiological findings during the treatment of pain in pediatric practice. Codein analgesia is also described because codein starts to be very modern drug with the dependence., R. Rokyta, J. Fricová., and Obsahuje seznam literatury
The activation of metabotropic glutamate receptors subtype 4 (mGluR4) potentiates models of absence seizures in adult rats. These seizures are age-dependent, but data concerning the role of mGluR4 in immature brain is insufficient. N-phenyl-7- (hydroxyimino)cyclopropa[b]chromen-1acarboxamide (PHCCC), which is a positive allosteric modulator of these receptors, was used in three different models of seizures in immature rats: 1) convulsions induced by high doses of pentetrazol (PTZ; a model of generalised tonic-clonic seizures); 2) rhythmic electroencephalographic (EEG) activity induced by low doses of PTZ (a model of absence seizures); and 3) electrically elicited cortical afterdischarges (ADs, a model of myoclonic seizures). We administered four doses of PHCCC (1, 3, 10 and 20 mg/kg) in PTZ-induced convulsions and two doses (3 and 10 mg/kg) in the two electrophysiological models of freely moving rats with implanted electrodes. Every dose and age group consisted from 8 to 10 rats. PTZ-elicited convulsions were not significantly influenced by PHCCC. In contrast, PHCCC potentiated the effect of a subconvulsant dose (60 mg/kg) of PTZ. The 10-mg/kg dose of PHCCC significantly prolonged the duration of PTZ-induced rhythmic activity episodes and shortened the intervals between individual episodes in 25-day-old rats (P25). In contrast, this potentiation was not seen in P18 rats. Cortical ADs were significantly prolonged with repeated stimulations by both doses of PHCCC in P12 and P18 animals. P25 rats exhibited only slightly longer AD durations. In conclusion, we did not find any anticonvulsant effect of PHCCC. On the contrary, proconvulsant action was demonstrated in all three models in immature rats., E. Szczurowska, P. Mareš., and Obsahuje seznam literatury
This review, which summarizes our findings concerning the long-term effects of pre-, peri- and postnatal factors affecting development, nociception and sensorimotor functions, focuses on three areas: 1) perinatal factors influencing nociception in adult rats were examined in rats with hippocampal lesions, after the administration of stress influencing and psychostimulant drugs (dexamethasone, indomethacine and methamphetamine); 2) the effect of pre- and early postnatal methamphetamine administration was shown to impair the development of sensorimotor functions tested in rat pups throughout the preweaning period; 3) the effect of extensive dorsal rhizotomy of the brachial plexus during the early postnatal period was studied with respect to neuropathic pain development and sensorimotor functions. The present study indicates that prenatal or neonatal stress, as well as various drugs, may disturb the development of the nociceptive system and cause long-term behavioral changes persisting to adulthood and that some types of neuropathic pain cannot be induced during the first two postnatal weeks at all. A mature nervous system is required for the development of the described pathological behaviors., R. Rokyta, A. Yamamotová, R. Šlamberová, M. Franěk, Š. Vaculín, L. Hrubá, B. Schutová, M. Pometlová., and Obsahuje bibliografii a bibliografické odkazy
The expression of sexually dimorphic phenotypes from a shared genome between males and females is a longstanding puzzle in evolutionary biology. Increasingly, research has made use of transcriptomic technology to examine the molecular basis of sexual dimorphism through gene expression studies, but even this level of detail misses the metabolic processes that ultimately link gene expression with the whole organism phenotype. We use metabolic profiling in Drosophila melanogaster to complete this missing step, with a view to examining variation in male and female metabolic profiles, or metabolomes, throughout development. We show that the metabolome varies considerably throughout larval, pupal and adult stages. We also find significant sexual dimorphism in the metabolome, although only in pupae and adults, and the extent of dimorphism increases throughout development. We compare this to transcriptomic data from the same population and find that the general pattern of increasing sex differences throughout development is mirrored in RNA expression. We discuss our results in terms of the usefulness of metabolic profiling in linking genotype and phenotype to more fully understand the basis of sexually dimorphic phenotypes., Fiona C. Ingleby, Edward H. Morrow., and Obsahuje bibliografii