The thymus plays a critical role in establishing and maintaining the peripheral T-cell pool. It does so by providing a microenvironment within which T-cell precursors differentiate and undergo selection processes to create a functional population of major histocompatibility complex-restricted, self-tolerant T cells. These cells are central to adap tive immunity. Thymic T-cell development is influenced by loca lly produced soluble factors and cell-to-cell interactions, as well as by sympathetic noradrenergic and endocrine system signalling. Thymic lymphoid and non- lymphoid cells have been shown not only to express β - and α 1 - adrenoceptors (ARs), but also to synthesize catecholamines (CAs). Thus, it is suggested that CAs influence T-cell development via both neurocrine/endocrine and autocrine/ paracrine action, and that they serve as immunotransmitters between thymocytes and nerves. CAs acting at multiple sites along the thymocyte developmental route affect T-cell generation not only numerically, but also qualitatively. Thymic CA level and synthesis, as well as AR expression exhibit sex steroid-mediated sexual dimorphism. Moreover, the influence of CAs on T-cell development exhibits glucocorticoid-dependent plasticity. This review summarizes recent findings in this field and our current understanding of complex and multifaceted neuroendocrine- immune communications at thymic level., G. Leposavić, I. Pilipović, M. Perišić., and Obsahuje bibliografii a bibliografické odkazy
Gender-specific reproductive roles are important factors determining sexual dimorphism. Here, we investigate the effects of sex-based differences and reproductive status on the defence of Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae) against infection by Steinernema feltiae (Filipjev, 1934) (Rhabditida: Steinernematidae). Female and male beetles, either virgin or post-copulation, were exposed individually to nematodes. Individuals were then sampled every 12 h, dissected, and checked for the presence of nematodes; we also measured their phenoloxidase (PO) activity. Reproductive status affected resistance to nematodes and PO activity as infected virgin individuals had a higher PO activity and lower mortality than reproducing individuals, with no differences between sexes. Mortality also increased with time, while PO activity did not change. Parasite load was related to reproductive status and sex, with reproducing females with the highest parasite loads in all treatments, and virgin males with more nematodes than sexually active males. Our results indicate that the costs of reproduction impair the immunological system of T. castaneum similarly in both sexes. It is possible, however, that other components of the immunological system that we did not measure, such as lysozyme activity, are impaired by infection with S. feltiae in a sex-specific way., Paulina Kramarz, Dariusz Małek, Maria Gaweł, Szymon M. Drobniak, Joanna Homa., and Obsahuje bibliografii
The expression of sexually dimorphic phenotypes from a shared genome between males and females is a longstanding puzzle in evolutionary biology. Increasingly, research has made use of transcriptomic technology to examine the molecular basis of sexual dimorphism through gene expression studies, but even this level of detail misses the metabolic processes that ultimately link gene expression with the whole organism phenotype. We use metabolic profiling in Drosophila melanogaster to complete this missing step, with a view to examining variation in male and female metabolic profiles, or metabolomes, throughout development. We show that the metabolome varies considerably throughout larval, pupal and adult stages. We also find significant sexual dimorphism in the metabolome, although only in pupae and adults, and the extent of dimorphism increases throughout development. We compare this to transcriptomic data from the same population and find that the general pattern of increasing sex differences throughout development is mirrored in RNA expression. We discuss our results in terms of the usefulness of metabolic profiling in linking genotype and phenotype to more fully understand the basis of sexually dimorphic phenotypes., Fiona C. Ingleby, Edward H. Morrow., and Obsahuje bibliografii