a1_Understanding of the diversity of species of Cryptosporidium Tyzzer, 1910 in tortoises remains incomplete due to the limited number of studies on these hosts. The aim of the present study was to characterise the genetic diversity and biology of cryptosporidia in tortoises of the family Testudinidae Batsch. Faecal samples were individually collected immediately after defecation and were screened for presence of cryptosporidia by microscopy using aniline-carbol-methyl violet staining, and by PCR amplification and sequence analysis targeting the small subunit rRNA (SSU), Cryptosporidium oocyst wall protein (COWP) and actin genes. Out of 387 faecal samples from 16 tortoise species belonging to 11 genera, 10 and 46 were positive for cryptosporidia by microscopy and PCR, respectively. All samples positive by microscopy were also PCR positive. Sequence analysis of amplified genes revealed the presence of the Cryptosporidium tortoise genotype I (n = 22), C. ducismarci Traversa, 2010 (n = 23) and tortoise genotype III (n = 1). Phylogenetic analyses of SSU, COWP and actin gene sequences revealed that Cryptosporidium tortoise genotype I and C. ducismarci are genetically distinct from previously described species of Cryptosporidium. Oocysts of Cryptosporidium tortoise genotype I, measuring 5.8-6.9 µm × 5.3-6.5 µm, are morphologically distinguishable from C. ducismarci, measuring 4.4-5.4 µm × 4.3-5.3 µm. Oocysts of Cryptosporidium tortoise genotype I and C. ducismarci obtained from naturally infected Russian tortoises (Testudo horsfieldii Gray) were infectious for the same tortoise but not for Reeve's turtles (Mauremys reevesii [Gray]), common garter snake (Thamnophis sirtalis [Linnaeus]), zebra finches (Taeniopygia guttata [Vieillot]) and SCID mice (Mus musculus Linnaeus)., a2_The prepatent period was 11 and 6 days post infection (DPI) for Cryptosporidium tortoise genotype I and C. ducismarci, respectively; the patent period was longer than 200 days for both cryptosporidia. Naturally or experimentally infected tortoises showed no clinical signs of disease. Our morphological, genetic, and biological data support the establishment of Cryptosporidium tortoise genotype I as a new species, Cryptosporidium testudinis sp. n., and confirm the validity of C. ducismarci as a separate species of the genus Cryptosporidium., Jana Ježková, Michaela Horčičková, Lenka Hlásková, Bohumil Sak, Dana Květoňová, Jan Novák, Lada Hofmannová, John McEvoy, Martin Kváč., and Obsahuje bibliografii
Based on previously published data, the Czech Republic is regarded an endemic country of the onchocercid nematodes Dirofilaria immitis (Leidy, 1856) and Dirofilaria repens Railliet et Henry, 1911. Nevertheless, while cases of D. repens are commonly reported from dogs in South Moravia, no recent records of D. immitis are available. Therefore, the present study was performed to clarify the occurrence of both species of Dirofilaria Railliet et Henry, 1910. Blood samples of 551 dogs sampled during 2015 and 2016 were analysed microscopically for presence of microfilariae and blood sera were examined by IDEXX SNAP® 4Dx® test (IDEXX, USA). DNA from blood of microscopically positive dogs was extracted and PCR protocol amplifying fragment of cytochrome c oxidase I (COI) gene was performed; PCR products were then sequenced. All dogs from the Bohemian part of the Czech Republic were negative. The prevalence of D. repens in the Moravian region was 5.7 % (27/476). BLAST analyses of obtained sequences confirmed the presence of D. repens (99-100% identical to KX265049). All sampled animals showed a negative result for D. immitis antigen in IDEXX SNAP® 4Dx® test. Our study confirmed the previously reported occurrence of D. repens in South Moravia and revealed its spreading from the epicentre to the north and west. PCR with subsequent sequencing together with negative results for D. immitis antigen in IDEXX SNAP® 4Dx® test revealed only D. repens infection. A previously published autochthonous infection of dogs with D. immitis in South Moravia was not confirmed.
We investigated the genotypes of Cryptosporidium infecting red squirrels (Sciurus vulgaris L.) in two areas of the Western Alps in Italy. Examination of 141 faecal samples from 70 red squirrels revealed oocysts of Cryptosporidium in 17 animals (24.3%). Based on 18S rRNA gene sequencing, two genotypes of Cryptosporidium species were found: 15 squirrels were positive for the Cryptosporidium ferret genotype and 2 for the Cryptosporidium chipmunk genotype I. The occurrence and intensity of Cryptosporidium infection did not differ between the study areas or sex. More than 85% of the positive animals were adults; however no difference was found between Cryptosporidium infection in the juvenile and adult age groups. Oocysts of the Cryptosporidium ferret genotype measured 5.5 ± 0.3 × 5.2 ± 0.2 µm (shape index 1.06) and the Cryptosporidium chipmunk genotype I 5.8 ± 0.3 × 5.4 ± 0.3 µm (shape index 1.07). Neonatal and adult CD1 and BABL/c mice inoculated with 1 × 103 fresh oocysts of both genotypes did not produce detectable infection.
Faecal samples were collected from cats kept as pets (n = 120) and stray cats (n = 135) in Central Europe (Czech Republic, Poland and Slovakia) and screened for the presence of Cryptosporidium spp., Giardia intestinalis (Kunstler, 1882), Encephalitozoon spp. and Enterocytozoon bieneusi Desportes, Le Charpentier, Galian, Bernard, Cochand-Priollet, Lavergne, Ravisse et Modigliani, 1985 by PCR analysis of the small-subunit of rRNA (Cryptosporidium spp. and G. intestinalis) and ITS (microsporidia) genes. Sequence analysis of targeted genes revealed the presence of C. felis Iseki, 1979, G. intestinalis assemblage F, E. cuniculi Levaditi, Nicolau et Schoen, 1923 genotype II, and E. bieneusi genotype D. There was no correlation between the occurrence of detected parasites and sex, presence of diarrhoea or drug treatment (drug containing pyrantel and praziquantel). Compared to pet cats (7%), stray cats (30%) were statistically more frequently infected with protist parasites and overall may present a greater risk to human health., Martin Kváč, Lada Hofmannová, Ynes Ortega, Nikola Holubová, Michaela Horčičková, Marta Kicia, Lenka Hlásková, Dana Květoňová, Bohumil Sak, John McEvoy., and Obsahuje bibliografii