Kofein podaný večer snižuje ospalost a zvyšuje pozornost a schopnost poznávat. Zpožďuje však též časový cirkadiánní systém, neboť následující den po podání je zpožděn rytmus v tvorbě melatoninu, ukazatele fáze cirkadiánních hodin. Vynucená desynchronizace mezi spánkem a dobou vysoké noční hladiny melatoninu, která signalizuje subjektivní noc jedince, vede k narušení celého cirkadiánního systému., Evening caffeine consumption attenuates sleepiness and increases attention and cognitive abilities. In addition, it delays the circadian timekeeping system, as the next day after caffeine consumption the human melatonin rhythm, a circadian clock phase marker, is delayed. Forced desynchrony of sleep and the interval of high melatonin levels, which indicates a subjective night for an individual, leads to a disruption of the circadian system., and Helena Illnerová.
Repeated postnatal caffeine treatment of rat pups led to transient developmental changes in cortical epileptic afterdischarges. To know if physiological cortical functions are also affected transcallosal evoked potentials were studied. Rat pups of the Wistar strain were injected daily with caffeine (10 or 20 mg/kg s.c.) from postnatal day (P) 7 to P11, control siblings received saline. Cortical interhemispheric responses were tested at P12, 18, 25 and in young adult rats. Amplitude of initial monosynaptic components was evaluated in averaged responses. Single pulses as well as paired and frequency (five pulses) stimulations were used. Developmental rules - highest amplitude of responses in 25-day-old rats, potentiation with paired and frequency stimulation present since P18 - were confirmed. Caffeine-treated rats exhibited transient changes: single responses were augmented in P25 if high stimulation intensity was used, paired-pulse and freque ncy responses were higher in experimental than in control anim als at P12, the opposite change was observed in 18- and more ma rkedly in 25-day-old rats. No significant changes were found in adult animals, monosynaptic transcallosal responses represent a simple and robust system. The developmental profile of described changes did not exactly correspond to changes in epileptic afterdischarges supporting the possibility that afterdischarges did not arise from early monosynaptic components of responses. In spite of transient nature of changes they can reflect delayed or more probably modified brain development., J. Tchekalarova, H. Kubová, P. Mareš., and Obsahuje bibliografii a bibliografické odkazy