Threshold intensities for epileptic phenomena induced by cortical stimulation were used for comparison of the action of GABA-B and GABA-A antagonists in rats with implanted electrodes. Both CGP 35348 (200 mg/kg i.p.) and bicuculline (4 mg/kg i.p.) significantly decreased thresholds for spike-and-wave afterdischarges and their motor counterpart (clonic seizures) whilst transition into the second, limbic type of afterdischarge as well as threshold for movements directly bound to stimulation remained uninfluenced by either drug., D. Živanović, K. Bernášková, Yu. Kaminskij, P. Mareš., and Obsahuje bibliografii
In the developing brain, mature brain derived neurotrophic factor (mBDNF) and its precursor (proBDNF) exhibit prosurvival and proapoptotic functions, respectively. However, it is still unknown whether mBDNF or proBDNF is a major form of neurotrophin expressed in the immature brain, as well as if the level of active caspase -3 correlates with the levels of BDNF forms during normal brain development. Here we found that both proBDNF and mBDNF were expressed abundantly in the rat brainstem, hippocampus and cerebellum between embryonic day 20 and postnatal day 8. The levels of mature neurotrophin as well as mBDNF to proBDNF ratios negatively correlated with the expression of active caspase -3 across brain regions. The immature cortex was the only structure, in which proBDNF was the major product of bdnf gene, especially in the cortical layers 2-3. And only in the cortex, the expression of BDNF precursor positive ly correlated with the levels of active caspase -3. These findings suggest that proBDNF alone may play an important role in the regulation of naturally occurring cell death during cortical development., P. N. Menshanov, D. A. Lanshakov, N. N. Dygalo., and Obsahuje bibliografii
Action of antiepileptic drugs in immature brain may differ from that in adult brain. The aim of our study was to study an anticonvulsant action of lamotrigine and phenytoin, i.e. two drugs active against partial seizures in adult experimental animals as well as human patients, in a model of simple partial seizures in immature rats. Epileptic foci were induced by local application of bicuculline methiodide on sensorimotor cortical area of 12-dayold rat pups. The animals were pretreated with lamotrigine (LTG, 10 or 20 mg/kg i.p.) or phenytoin (PHT, 15, 30 or 60 mg/kg i.p.). Control rats for LTG received saline, controls for PHT solvent composed of propyleneglycol, ethanol and water. Influence of either drug on interictal activity was negligible. High doses of both LTG and PHT suppressed the transition into ictal phases and shortened the duration of persisting seizures. The tricomponent solvent exhibited moderate activity against ictal activity if compared with saline controls. The two drugs exhibited similar action in our model, i.e. the suppression of secondary generalization from epileptic focus. This action is comparable to that described for human patients and adult experimental animals. In favor of lamotrigine speaks the absence of serious side effects., K. Bernášková, P. Mareš., and Obsahuje bibliografii a bibliografické odkazy
Jsou probrány smyslové orgány jako systémy sloužící detekci informací ze zevního i vnitřního prostředí a jejich předání do centrálního nervového systému, kde jsou pak zpracovávány za účasti řady mozkových struktur tak, aby mohly být podkladem vědomé interpretace okolního světa. Jsou zmíněny smyslové receptory jako nervové struktury zaznamenávající specifické formy energie v našem okolí a jejich klíčová funkce, tzv. transdukce, tj. přeměna energie dané modality na elektrickou energii akčních potenciálu aferentních nervů. Informace zakódovaná v této podobě je pak přepojována v podkorových ? talamických centrech a zpracována a syntetizována v mozkové kůře. Konkrétní uspořádání tohoto obecného schématu je uvedeno pro jednotlivé hlavní smyslové systémy: somatosenzorický, zrakový, sluchový, vestibulární, chuťový a čichový. Stručně jsou probrány také základní poruchy smyslového vnímání, jejich obecná etiologie a patogenetické mechanismy, zodpovědné za jejich vývoj a příznaky. and Otomar Kittnar
Repeated postnatal caffeine treatment of rat pups led to transient developmental changes in cortical epileptic afterdischarges. To know if physiological cortical functions are also affected transcallosal evoked potentials were studied. Rat pups of the Wistar strain were injected daily with caffeine (10 or 20 mg/kg s.c.) from postnatal day (P) 7 to P11, control siblings received saline. Cortical interhemispheric responses were tested at P12, 18, 25 and in young adult rats. Amplitude of initial monosynaptic components was evaluated in averaged responses. Single pulses as well as paired and frequency (five pulses) stimulations were used. Developmental rules - highest amplitude of responses in 25-day-old rats, potentiation with paired and frequency stimulation present since P18 - were confirmed. Caffeine-treated rats exhibited transient changes: single responses were augmented in P25 if high stimulation intensity was used, paired-pulse and freque ncy responses were higher in experimental than in control anim als at P12, the opposite change was observed in 18- and more ma rkedly in 25-day-old rats. No significant changes were found in adult animals, monosynaptic transcallosal responses represent a simple and robust system. The developmental profile of described changes did not exactly correspond to changes in epileptic afterdischarges supporting the possibility that afterdischarges did not arise from early monosynaptic components of responses. In spite of transient nature of changes they can reflect delayed or more probably modified brain development., J. Tchekalarova, H. Kubová, P. Mareš., and Obsahuje bibliografii a bibliografické odkazy