The aim of this study was to co mpare the levels of the plasma muscle-derived cytokines (myokines) and reactive oxygen and nitrogen species (RONS) after muscle damage triggered by different exercises, and to demonstrate the relationships between RONS, thiol redox status and myokines. Sixteen young men participated in a 90-min run at 65 % VO 2 max (Ex.1) or 90-min run at 65 % VO 2 max finished with a 15-min eccentric phase (Ex.2, downhill running). Plasma samples were collected before and at 20 min, 24 h and 48 h after exercise. The exercise trials significantly elevated the concen trations of plasma hydrogen peroxide (H2O2) and 8-isoprostane at 20 min rest. Myokines IL-6 and IL-10 increased at 20 min rest while IL-1 β and TNF α increased at 24 h rest following both running. Ex.2 caused a significant increase in nitric oxide (NO), IL-6, IL-10 and oxidized glutathione (GSSG) levels. Thiol redox status (GSHtotal-2GSSG/GSSG) decreased by about 30 % after Ex.2 as compared to Ex.1. H 2 O 2 and NO directly correlated with IL-6, IL-10, IL-1 β , TNF α and glutathione. These results show that eccentric work is an important factor that enhances the production of RONS and muscle-derived cytokines, and that there is a possible participation of thiol redox status in the release of myokines to blood., A. Zembron-Lacny, M. Naczk, M. Gajewski, J. Ostapiuk-Karolczuk, H. Dziewiecka, A. Kasperska, K. Szyszka., and Obsahuje bibliografii
a1_Photosynthetic gas exchange, dry mass production, water relations and inducibility of crassulacean acid metabolism (CAM) pathway as well as antioxidative protection during the C3-CAM shift were investigated in Sedum album and Sedum stoloniferum from Crassulaceae under water stress for 20 days. Leaf relative water content (RWC), leaf osmotic and water potential decreased with increasing water stress in both studied species. Significant reduction in dry matter production and leaf thickness was detected only in S. stoloniferum after 20-d water stress. Δtitratable acidity and phosphoenolpyruvate carboxylase (PEPC) activity in S. album responded to drought at early stages of stress treatment, continued to increase throughout the entire stress period and reached levels 15 times higher than those in well-watered plants. In S. stoloniferum, however, both parameters responded later and after a transient increase declined again. In S. stoloniferum, in spite of increase by drought stress, net night-time CO2 assimilation was negative resembling a C3-like pattern of gas exchange. Catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) activities increased in plants subjected to mild water stress while declined as the stress became severe. Although malondialdehyde (MDA) content was higher in drought-stressed S. stoloniferum, the increase in the concentration of hydrogen peroxide (H2O2) that may act as a signal for C3-CAM transition was higher in S. album compared with S. stoloniferum. In drought-stressed plants, SOD activity showed a clear diurnal fluctuation that was more steadily expressed in S. album. In addition, such pattern was observed for CAT only in S. album. We concluded that temporal and diurnal fluctuation patterns in the activity of antioxidant enzymes depended on duration of drought stress and was related to the mode of photosynthesis and degree of CAM induction., a2_According to our results, S. stoloniferum developed a low degree of CAM activity, e.g. CAM-cycling metabolism, under drought conditions., G. Habibi, R. Hajiboland., and Obsahuje bibliografii
Polymorphonuclear neutrophils (PMN) are thought to play a role in reperfusion injury and ischemia. These effects are partly mediated by toxic oxygen species (superoxide anion, hydrogen peroxide and hydroxyl radical) acting at the level of the endothelium. It was demonstrated recently that the superoxide anion reacts with nitric oxide (NO) and that interaction leads to the generation of highly toxic peroxynitrite. Several drugs were tested so far in order to affect PMN function. It was demonstrated that dipyridamole (2,6-bis-diethanolamino-4,8-dipiperidinopyrimido-(5,4-d)-pyrimidine) can influence neutrophil function by inhibiting adenosine uptake. However, this action can not fully explain all of the observed effects of dipyridamole action on PMN metabolism. The aim of our study was to evaluate the influence of dipyridamole on nitric oxide production by activated polymorphonuclear neutrophils. Incubation of PMNs with hydroxylamine (HA) and phorbol myristate acetate (PMA) generated nitrite (36.4±4.2 nmol/h 2x106 PMN), dipyridamole at 100 μmol/l, 50 μmol/l and 10 μmol/l caused a considerable drop in nitrite production (11.8±1.8, 19.7±2.7 and 27.4±3.2 nmol/h, respectively). Neither adenosine nor the adenosine analogue could mimic the dipyridamole effect. Moreover theophylline, an adenosine inhibitor could not reverse the dipirydamole action on PMN metabolism. We also found that dipyridamole inhibited hydrogen peroxide release from neutrophils. Catalase that scavenges hydrogen peroxide also largely abolished nitric oxide release from PMN. It is evident that dipyridamole inhibits hydroxylamine-augmented nitric oxide production by activated polymorphonuclear neutrophils through an adenosine-independent mechanism.
Effects of nitrogen (N)-deficiency on midday photoinhibition in flag leaves were compared between two contrastive Japanese rice cultivars, a traditional japonica cultivar with low yield, cv. Shirobeniya (SRB), and a japonica-indica intermediate type with high yield, cv. Akenohoshi (AKN). Both cultivars were grown under high-N and low-N conditions. At midday, low-N supply resulted in more intensive reductions in net photosynthetic rate, stomatal conductance, maximal quantum yield of photosystem II (PSII) and quantum yield of PSII electron transport in SRB than in AKN, indicating that SRB was more strongly photoinhibited than AKN under low-N condition. At midday, the low-N plants of two cultivars showed higher superoxide dismutase (SOD) activities than the high-N plants. However, ascorbate peroxidase (APX) activity was maintained in AKN but significantly decreased in SRB under low-N condition (N-deficiency). In contrast, hydrogen peroxide (H2O2) content in SRB significantly increased under low-N condition, indicating that the susceptibility to midday photoinhibition in the low-N plants of SRB is related to the increased H2O2 accumulation. It is suggested that the midday depression in photosynthesis may be a result of oxidative stress occurring in the low-N plants in which antioxidant capacity is not enough to cope with the generation of H2O2. Therefore, H2O2-scavenging capacity could be an important factor in determining the cultivar difference of midday photoinhibition in flag leaves of rice under low-N condition. and E. Kumagai, T. Araki, O. Ueno.
The aim of this study was to investigate whether haemocytes of Galleria mellonella (Lepidoptera: Pyralidae) larvae produce reactive oxygen species (ROS) like human blood phagocytes. The production of ROS was measured first using luminol-enhanced chemiluminescence of un-stimulated and stimulated (four activators with different modes of action) haemolymph or isolated haemocytes. However, spontaneous and activated production of ROS remained at the background level. In subsequent experiments an ultrasensitive fluorescence method using Amplex Red reagent to detect hydrogen peroxide (H2O2) was used. After optimization, Amplex Red was successfully used for determining H2O2 production by both un-stimulated and stimulated haemocytes. To determine the affect of pH and ions on the measurement, several diluent solutions were tested. This revealed that Ca2+ and Mg2+ ions are less important for the reaction in insect than mammalian cells. Among the activators tested, phorbol myristate acetate (PMA) and calcium ionophore (Ca-I) had the best stimulatory effect on insect samples, while opsonised zymosan particles (OZP) was the best activator for human phagocytes. In conclusion, the haemocytes of G. mellonella produce H2O2 as an important innate immunity factor, but under different conditions and in different amounts, which probably results in them being less effective in killing microbes than human phagocytes. and Ondřej Vašíček, Ivana Papežíková, Pavel Hyršl.
Acclimation to excess light is required for optimizing plant performance under natural environment. The present work showed that the treatment of Arabidopsis leaves with exogenous H2O2 can increase the acclimation of PSII to excess light. Treatments with H2O2 also enhanced the capacity of the mitochondrial alternative respiratory pathway and salicylic acid (SA) content. Our work also showed that the lack in alternative oxidase (AOX1a) in AtAOX1a antisense line and the SA deficiency in NahG (salicylate hydroxylase gene) transgenic mutant attenuated the H2O2-induced acclimation of PSII to excess light. It indicates that the
H2O2-induced acclimation of PSII to excess light could be mediated by the alternative respiratory pathway and SA., Q. Z. Hou, Y. P. Wang, J. Y. Liang, L. Y. Jia, H. Q. Feng, J. Wen, N. Ehmet, J. Y. Bai., and Obsahuje bibliografii
In plants, hydrogen peroxide (H2O2) acts as a signalling molecule that facilitates various biochemical and physiological processes. H2O2 is a versatile molecule, involved in several cellular processes both under stress and stress-free conditions. In regulating plant metabolism under stress conditions, exogenous application of H2O2 also plays a pivotal role which is manifested in improved growth, photosynthetic capacity, and antioxidant protection. Abiotic stress is an inevitable environmental factor that extensively affects and reduces growth, quality, yield, and productivity of plants. Several signalling pathways involved in H2O2-mediated stress and defense responses have been extensively studied and there is ample scope of additional research that could further clarify the mechanism and modulating factors which regulate these pathways. An attempt has been made to dissect the role of H2O2 under low temperature stress and how it affects plant growth and development, photosynthetic capacity, regulation of antioxidant system, and signalling., T. A. Khan, M. Yusuf, Q. Fariduddin., and Obsahuje bibliografii
Hypoxic exposure triggers a generation of reactive oxygen species that initiate free radical damage to the lung. Hydrogen peroxide is the product of alveolar macrophages detectable in the expired breath. We evaluated the significance of breath H2O2 concentration for the assessment of lung damage after hypoxic exposure and during posthypoxic period. Adult male rats were exposed to normobaric hypoxia (10 % O2) for 3 hours or 5 days. Immediately after the hypoxic exposure and then after 7 days or 14 days of air breathing, H2O2 was determined in the breath condensate and in isolated lung macrophages. Lipid peroxidation was measured in lung homogenates. Three-hour hypoxia did not cause immediate increase in the breath H2O2; 5-day hypoxia increased breath H2O2 level to 458 %. After 7 days of subsequent air breathing H2O2 was elevated in both groups exposed to hypoxia. Increased production of H2O2 by macrophages was observed after 5 days of hypoxia and during the 7 days of subsequent air breathing. Lipid peroxidation increased in the periods of enhanced H2O2 generation by macrophages. As the major increase (1040 %) in the breath H2O2 concentration found 7 days after 3 hours of hypoxia was not accompanied by lipid peroxidation, it can be concluded that the breath H2O2 is not a reliable indicator of lung oxidative damage., J. Wilhelm, M. Vaňková, H. Maxová, A. Šišková., and Obsahuje bibliografii
Pathogenic and nonpathogenic strains of Cryptobia salmositica Katz, 1951 and C. bullocki Strout, 1965 produced hydrogen peroxide, pyruvate and lactate under in vitro conditions in Minimum Essential Medium (MEM). As parasite number increased, the phenol red in the medium changed from red to yellow. This change was not associated with a decrease in pH, or an increase in pyruvate or lactate, but was correlated with an increased secretion of hydrogen peroxide. Parasites incubated at 10°C in medium at pH 6.0, 6.5, 7.0 and 7.3 were active for about 1 week with decreasing activity in the absence of serum. Parasites in saline (pH 6.0, 6.5, 7.0 and 7.3) were nonmotile within 24 h and were dead in about 1 week. This suggests that these Cryptobia spp. are sensitive to changes in pH and require medium which is buffered, either with serum or Hepes.
Excessive production of reactive oxygen species (ROS) are implicated in the pathogenesis of numerous disease states. However, direct measurement of in vivo ROS in humans has remained elusive due to limited access to appropriate tissue beds and the inherently short half-lives and high reactivity of ROS. Herein, we describe a novel technique by which to measure in vivo ROS in human skeletal muscle. Microdialysis probes were inserted into the vastus lateralis of eight healthy volunteers. Amplex Ultrared, a highly specific fluorogenic substrate for hydrogen peroxide (H2O2), and horseradish peroxidase (HRP), were perfused through microdialysis probes, and outflowing dialysate was collected and fluorescence was measured. Extracellular H2O2 that crossed the microdialysis membrane was measured via fluorescence of the dialysate. Superoxide dismutase (SOD) was then added to the inflowing perfusion media to convert any superoxide crossing the microdialysis membrane to H2O2 within the microdialysis probe. Fluorescence significantly increased (P=0.005) upon SOD addition. These data demonstrate the feasibility of measuring both in vivo H2O2 and superoxide in the extracellular environment of human skeletal muscle, providing a technique with a potential application to a wide range of circulatory and metabolic studies of oxidative stress., J. D. La Favor, E. J. Anderson, R. C. Hickner., and Obsahuje bibliografii