The aim of this study was to investigate whether haemocytes of Galleria mellonella (Lepidoptera: Pyralidae) larvae produce reactive oxygen species (ROS) like human blood phagocytes. The production of ROS was measured first using luminol-enhanced chemiluminescence of un-stimulated and stimulated (four activators with different modes of action) haemolymph or isolated haemocytes. However, spontaneous and activated production of ROS remained at the background level. In subsequent experiments an ultrasensitive fluorescence method using Amplex Red reagent to detect hydrogen peroxide (H2O2) was used. After optimization, Amplex Red was successfully used for determining H2O2 production by both un-stimulated and stimulated haemocytes. To determine the affect of pH and ions on the measurement, several diluent solutions were tested. This revealed that Ca2+ and Mg2+ ions are less important for the reaction in insect than mammalian cells. Among the activators tested, phorbol myristate acetate (PMA) and calcium ionophore (Ca-I) had the best stimulatory effect on insect samples, while opsonised zymosan particles (OZP) was the best activator for human phagocytes. In conclusion, the haemocytes of G. mellonella produce H2O2 as an important innate immunity factor, but under different conditions and in different amounts, which probably results in them being less effective in killing microbes than human phagocytes. and Ondřej Vašíček, Ivana Papežíková, Pavel Hyršl.
Phagocyte released reactive oxygen species are often discussed in connection with ischemic and reperfusion injuries to the myocardium. The kinetics of the accumulation and oxidative burst of human blood phagocytes was studied by chemiluminescence during open heart surgery in the myocardium of human patients. Direct evidence is presented for an accumulation of neutrophils along with their markedly increased metabolic activity (oxygen radical formation), especially following the reperfusion of the ischemic myocardium. Leukocyte numbers and activity remained significantly elevated even in the venous blood obtained 24 h after the operation.
The effect of three therapeutically used drugs and five polyphenolic compounds on the mechanism of oxidative burst was compared in whole blood and isolated neutrophils at cellular and molecular level. In 10 μM concentration, the compounds investigated decreased the oxidative burst of whole blood in the rank order of potency: N-feruloylserotonin (N-f-5HT) > curcumin (CUR) > quercetin (QUER) > arbutin (ARB) > resveratrol (RES) > dithiaden (DIT) > carvedilol (CARV) > brompheniramine (BPA). The ratio between the percentage inhibition of extracellular versus intracellular chemiluminescence (CL) followed the rank order QUER > N-f-5HT > RES > CUR > DIT and is indicative of the positive effect of the compounds tested against oxidative burst of neutrophils, demonstrating suppression of reactive oxygen species extracellularly with minimal alteration of intracellular reactive oxygen species (ROS). Activation of protein kinase C was significantly decreased by DIT, CUR, QUER and N-f-5HT. CARV, DIT, QUER and ARB reduced activated neutrophil myeloperoxidase release more significantly compared with the effect on superoxide anion generation. All compounds tested increased the activity of caspase-3 in cell-free system. It is suggested that other regulatory mechanisms than protein kinase C might participate in the inhibition of neutrophil activation with the compounds tested. Different mechanisms are concerned in controlling the assembly of NADPH oxidase and the regulatory role of calcium ions is suggested. Compounds decreasing the amount of extracellular ROS generation, yet affecting but minimally intracellular ROS generation, are promising for further investigation in vivo., R. Nosáľ, K. Drábiková, V. Jančinová, T. Mačičková, J. Pečivová, T. Perečko, J. Harmatha, J. Šmidrkal., and Obsahuje bibliografii
Production of hydrogen peroxide by rat lung alveolar macrophages represents one of the key events in the inflammatory process. For the interpretation of the in vitro measurements it is important to control all possible interfering influences. The present work documents that the type of anaesthesia might critically influence the observed results. H2O2 production was measured in isolated rat alveolar macrophages by luminol chemiluminescence catalyzed by horseradish peroxidase. Three different mechanisms of H2O2 production were observed after stimulation of cells with a chemotactic peptide (FMLP), phorbol ester (PMA), and during cell adherence. All these activities were influenced independently by the treatment with barbiturates, which both stimulated or inhibited the H2O2 production, depending on the barbiturate concentration. As the effective barbiturate concentrations were found to be within the range used for the anaesthesia of experimental animals, the presented results imply that barbiturates are not suitable for experiments in which the production of reactive oxygen species by phagocytes is measured, and that other anaesthetics should be tested.
Hydrogen peroxide production was measured in non-elicited rat peritoneal macrophages using luminol-dependent chemiluminescence (LDCL). Isolated cells were activated by a chemotactic peptide (FMLP) or by a phorbol ester (PMA) or by the combination of both. A hundred-fold higher LDCL intensity was achieved with PMA relative to FMLP. However, when FMLP was added subsequently to PMA it produced approximately the same response as did PMA. These measurements were carried out with cells isolated from controls and from animals exposed to normobaric hypoxia (10 % O2) for 3 hours, 3 days, or 21 days. Hypoxia had a dual effect. Acutely (within 3 hours) it attenuated the production of hydrogen peroxide triggered by PMA, whilst during longer exposure (3 or 21 days) it increased the response induced by FMLP. Hypoxia can thus modulate the capacity of respiratory burst in peritoneal macrophages.
The sequence of changes in circulating immune cells and in free radical production was studied during the small intestine reperfusion. Rat small intestine ischemia/reperfusion was induced by a 45 min superior mesenteric artery occlusion followed by a 4-hour reperfusion. Samples of peripheral blood were collected every 20 min during reperfusion. While the number of polymorphonuclear leukocytes increased significantly both in the sham-operated controls and the experimental group (about 400 % at the end of reperfusion), a decrease in lymphocyte counts to 60 % was observed in the experimental group only. Although there were no changes in the counts of total T lymphocytes, a significant reduction in B cell counts was observed. Flow-cytometrical measurements showed no changes in the Tc subpopulation, while the Th subpopulation increased in the experimental group only. Free radical generation in blood (luminometric measurements) increased gradually and reached an eight-fold level by the end of reperfusion in both groups. Thus, it has been shown that the increase in free radical production is mainly due to the increased number of polymorphonuclear leukocytes mobilized already at the initial stages of reperfusion. The reduction in B lymphocyte population is probably due to homing mechanisms., J. Hamar, I. Rácz, M. Číž, A. Lojek, É. Pállinger, J. Fűrész., and Obsahuje bibliografii