In order to understand better Cd resistance in soybean, Dongying wild soybean treated with different Cd concentrations were evaluated. The biomass, chlorophyll (Chl) content, leaf color, Chl a fluorescence parameters, photosynthesis parameters, and Cd contents were determined. Our results showed that when Cd concentration was ≤ 2 kg m-3, no significant decrease in biomass, photosynthetic parameters, and maximal photochemical efficiency of PSII was observed. This indicated that Dongying wild soybean resisted Cd toxic effects under such conditions. In addition, atomic absorption experiment results demonstrated that when Cd concentration was ≤ 0.5 kg m-3, the accumulation of Cd in wild soybean was lower in roots than that in shoots, while the accumulation of Cd was higher in roots than that in shoots when Cd concentration was ≥ 1 kg m-3. Therefore, Dongying wild soybean showed a certain resistance to Cd and could serve as a valuable germplasm resource for improving the breeding of
Cd-resistant soybean., L. Liu, Y. K. Shang, L. Li, Y. H. Chen, Z. Z. Qin, L. J. Zhou, M. Yuan, C. B. Ding, J. Liu, Y. Huang, R. W. Yang, Y. H. Zhou, J. Q. Liao., and Obsahuje bibliografii
Glechoma longituba (Nakai) Kupr. is a perennial shade plant with pharmaceutical importance. The aim of this study was to investigate the effects of light intensity on the growth, photosynthesis, and accumulation of secondary metabolites in G. longituba grown under six different light environments. The high light intensity decreased the leaf size, specific leaf area, and aboveground dry mass, the number of grana per chloroplast, the number of lamella per granum, the thickness of the grana, the apparent quantum efficiency, the chlorophyll (Chl) content, the concentrations of ursolic and oleanolic acid. The high light increased the stomatal density, the stoma size, the number of chloroplast per a cell, the chloroplast size, the dark respiration rate, the light saturation point, the light compensation point, and the Chl a/b ratio. With the reduction in the light intensity, the light-saturated net photosynthetic rate, the aerial dry mass per plant, and the yields of ursolic and oleanolic acid decreased after an initial increase, peaking at 16 and 33% of sunlight levels. Overall, the 16 and 33% irradiance levels were the most efficient in improving the yields and qualities of the medicinal plant. The lower light demand and growth characteristics suggest that G. longituba is an extremely
shade-tolerant plant and that appropriate light intensity management might be feasible to obtain higher yields of secondary metabolites in agricultural management., L. X. Zhang, Q. S. Guo, Q. S. Chang, Z. B. Zhu, L. Liu, Y. H. Chen., and Obsahuje bibliografii
Apple rootstock seedling M.9-T337 was selected to explore the effect of drought stress. The findings indicated that the relative water content of both the leaf and soil gradually decreased with an increase in drought stress. The water-use efficiency of the leaves increased gradually but decreased sharply after 20 d of drought. Changes in the gas-exchange parameters and chlorophyll fluorescence parameters reflected the gradual decrease in the photosynthetic capacity of the plants with drought stress duration. Infrared thermal imaging showed significant temperature differences between the drought-stressed and control plants after 15 d of drought treatment. When irreversible damage occurred under drought stress, the crop water-stress index and relative water content of the leaf and soil were 0.7, 60.5, and 17.8%, respectively. Based on the results, we formulated a drought stress-grade standard. Further, we established that the best time for irrigation is when drought stress reaches grade 3., D. T. Gao, C. Y. Shi, Q. L. Li, Z. F. Wei, L. Liu, J. R. Feng., and Obsahuje bibliografické odkazy
Abnormal accumulation of lymphoblasts in the blood and bone marrow is the main characteristic of acute lymphoblastic leukaemia (ALL). Glucocorticoids are effective drugs for ALL, while glucocorticoid resistance is an obstacle to ALL therapy. MicroRNAs (miRNAs) are implicated in the drug resistance and modulate the response of ALL to glucocorticoids. The role of miR-503 in glucocorticoid sensitivity of ALL was investigated in this study. Firstly, T-leukaemic cells were isolated from patients with ALL. The human ALL cell line (CCRF/CEM) was incubated with dexamethasone to establish a glucocorticoid- resistant ALL cell line (CCRF/CEM-R). Data from MTT showed that IC50 (50% inhibitory concentration) of dexamethasone in T-leukaemic cells isolated from glucocorticoid-resistant ALL patients or CCRF/CEM-R was increased compared with IC50 in T-leukaemic cells isolated from glucocorticoid- sensitive ALL patients or CCRF/CEM. MiR- 503 was down-regulated in glucocorticoid-resistant leukaemic cells and CCRF/CEM-R. Secondly, overexpression of miR-503 sensitized CCRF/CEM-R to dexamethasone. Moreover, over-expression of miR- 503 also promoted the sensitivity of ALL cells to dexamethasone. Thirdly, miR-503 bound to WNT3A mRNA and negatively regulated the expression of WNT3A. Over-expression of miR-503 reduced protein expression of nuclear β-catenin, and over-expression of WNT3A attenuated the miR-503 overexpression- induced decrease in nuclear β-catenin. Lastly, the over-expression of miR-503-induced increased sensitivity of ALL-resistant cells and CCRF/ CEM-R to dexamethasone was attenuated by overexpression of WNT3A. In conclusion, miR-503 targeted WNT3A mRNA to sensitize ALL cells to glucocorticoids through inactivation of the Wnt/β-catenin pathway.
Drought impacts severely crop photosynthesis and productivity. Development of transgenic rice overexpressing maize phosphoenolpyruvate carboxylase (PEPC) is a promising strategy for improving crop production under drought stress. However, the molecular mechanisms of protection from PEPC are not yet clear. The objective of this study was: first, to characterize the response of individual photosynthetic components to drought stress; second, to study the physiological and molecular mechanisms underlying the drought tolerance of transgenic rice (cv. Kitaake) over-expressing maize PEPC. Our results showed that PEPC overexpressing improved the ability of transgenic rice to conserve water and pigments during drying as compared to wild type. Despite the fact that drought induced reactive oxygen species and damaged photosystems (especially, PSI) in both lines, higher intercellular CO2 concentration protected the photosynthetic complexes, peptides, and also ultrastructure of thylakoid membranes against the oxidative damage in transgenic rice. In conclusion, although photosynthetic apparatus suffered an inevitable and asymmetric impairment during drought conditions, PEPC effectively alleviated the oxidative damage on photosystems and enhanced the drought tolerance by increasing intercellular CO2 concentration. Our investigation provided critical clues for exploring the feasibility of using C4 photosynthesis to increase the yield of rice under the aggravated global warming., W. J. Shen, G. X. Chen, J. G. Xu, Y. Jiang, L. Liu, Z. P. Gao, J. Ma, X. Chen, T. H. Chen, and C. F. Lv., and Obsahuje seznam literatury
The purpose of this study was to determine preventive and protective effects of chronic orally administration with quetiapine (QUE) against anxiety-like behavior and cognitive impairments in rats exposed to the enhanced single prolonged stress (ESPS), an animal model that is used to study post-traumatic stress disorder (PTSD), and to detect changes in the expression of cortical phosphorylated p44/42 extracellular-regulated protein kinase (pERK1/2). Before or after exposure to ESPS paradigm, consisting of 2-h constraint, 20-min forced swimming, etherinduced loss of consciousness, and an electric foot shock, rats were given orally QUE (10 mg/kg daily) for 14 days. Animals were then tested in the open field (OF), elevated plus-maze (EPM), and Morris water maze (MWM). Brains were removed for immunohistochemical staining of pERK1/2. ESPS exposure resulted in pronounced anxiety-like behavior compared to unexposed animals. ESPS-exposed animals also displayed marked learning and spatial memory impairments. However, QUE treatment (both before and after ESPS exposure) significantly ameliorated anxiety-like behavior, learning and spatial memory impairments. ESPS also markedly reduced the expression of pERK1/2 in the prefrontal cortex, medial amygdala nucleus, and cingulate gyrus. Both before and after ESPS exposure QUE treatments significantly elevated the reduced pERK1/2 expression in the three brain regions. QUE has preventive and protective effects against stress-associated symptoms and the changes in pERK1/2 functions may be associated with the pathophysiology of traumatic stress and the therapeutic efficacy of anti-PTSD therapy., H.-N. Wang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy