The "source" level in the olive cultivar Leccino was varied by girdling at different stages of fruit growth. Afterwards, the effects on gas exchange, fruit growth, and ripening and blooming were studied. Girdling during fruit growth did not significantly influence net photosynthetic rate (PN) except in the last phase of fruit growth when the PN was reduced. In the girdled branch, PN began to decrease at the onset of starch accumulation because fruit growth ceased. In mid-November stomatal conductance (gs) and transpiration rate (E) were also reduced by girdling, whereas sub-stomatal CO2 concentration (Ci) increased in leaves from the girdled branches. The total chlorophyll content (Chl) tended to decrease in parallel with the reduced PN. Girdling did not substantially influence the leaf and shoot water contents. The large availability of assimilates seems to cause an earlier fruit ripening. In general, girdling increased fruit dry mass. Healing before the time when the majority of pulp growth occurs reduced the effect of girdling. June girdling increased the pit dry mass. Girdling at the beginning of August and September, compared to the control, increased the pulp dry mass, but the pit dry mass did not differ with respect to the control. The percentage of oil in the fruit, on a dry mass basis, increased with August and September girdlings, but the percentage of oil in the pulp did not change. Girdling reduced shoot growth, but the internode length was unchanged. Girdling slightly stimulated differentiation of flower buds.
The influence of different leaf-to-fruit (l-t-f) ratios on leaf net photosynthetic rate (PN) and fruit characteristics in Olea europaea L. cv. Frantoio was evaluated in 2001 and 2002. In both years, at the end of June, at the end of July, and in mid-September (first, second, and third time of treatment, respectively), defoliation or fruit thinning were performed to give l-t-f ratios of 1/1, 3/1, 5/1, and 7/1 (about 5.1, 15.3, 25.6, and 35.8 cm2 of leaf area per fruit, respectively) on girdled and ungirdled peripheral shoots. PN showed substantial seasonal and diurnal variations. In ungirdled shoots, no differences due to the different l-t-f ratios were observed, whereas in girdled shoots PN tended to be lower in shoots with a high l-t-f ratio. In general, the values of leaf transpiration rate (E), stomatal conductance (gs), sub-stomatal CO2 concentration (Ci), and dark respiration rate (RD) were associated with those of PN. The starch and reducing sugar contents and area leaf dry mass (ADM) tended to be higher in leaves on girdled shoots with high l-t-f ratio, whereas in ungirdled shoots no differences related to the different l-t-f ratios were observed. The higher saccharide content in the leaves and the lower PN, in the presence of a high Ci, observed in girdled shoots with a high l-t-f ratio suggests that the depression in PN in these shoots may be the result of a feedback inhibition of the photosynthetic mechanism that regulates such a process. The l-t-f ratio did not have a substantial effect on fruit drop. In ungirdled shoots, the different l-t-f ratios did not produce significant differences in terms of fruit growth and leaf dry matter and saccharide contents, whereas in girdled shoots fruit growth increased as the l-t-f ratio increased, particularly when treatments were applied at the initial stage of fruit development. The percentage of oil in the pulp, on a dry matter basis, was not substantially influenced by girdling and l-t-f ratio. The abundant availability of assimilates seemed to cause earlier fruit ripening and, at the same time, retard fruit senescence (fruit detachment force). Shoot growth was slightly reduced by girdling. The abundant availability of assimilates, induced by girdling associated with high l-t-f ratio, stimulated flower induction. and P. Proietti, L. Nasini, F. Famiani.
Leaf senescence can be induced by numerous factors. In order to explore the relationship between root respiration and leaf senescence, we utilized different types of phloem girdling to control the root respiration of Alhagi sparsifolia and its physiological response. Our results showed that both girdling and inhibition of root respiration led to a decline of stomatal conductance, photosynthesis, transpiration rate, chlorophyll (Chl) a, Chl b, carotenoid (Car) content, Chl a/b, Chl/Car, water potential, and Chl a fluorescence, as well as to an increase of abscisic acid (ABA), proline, and malondialdehyde content in leaves and to upregulation of senescence-associated gene expression. Our present work implied that both inhibition of root respiration and girdling can induce leaf senescence. In comparison with phloem girdling, the leaf senescence caused by inhibition of root respiration was less significant. The reason for girdling-induced senescence was ABA and carbohydrate accumulation. Senescence induced by inhibition of root respiration occurred due to leaf water stress resulting from inhibition of water absorption., G.-L. Tang, X.-Y. Li, L.-S. Lin, Y. Hu, F.-J. Zeng., and Obsahuje seznam literatury
The source-sink relationship is one of major determinants of plant performance. The influence of reproductive sink demand on light-saturated photosynthesis (Pmax), dark respiration (RD), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), contents of soluble sugar (SSC), nitrogen, carbon, and photosynthetic pigments was examined in blueberry (Vaccinium corymbosum L. cv. ‘Brigitta’) during the final stage of rapid fruit growth. Measurements were performed three times per day on developed, sun-exposed leaves of girdled shoots with 0.1, 1, and 10 fruit per leaf (0.1F:L, 1F:L, and 10F:L, respectively) and nongirdled shoots bearing one fruit per leaf (NG). Girdling and lower fruit amount induced lower Pmax, gs, N, and total chlorophyll (Chl) and higher WUEi, SSC, RD, Chl a/b ratio and carotenoids-to-chlorophylls ratio (Car/Chl) for the 1F:L and 0.1F:L treatments. The impact of girdling was counterbalanced by 10F:L, with NG and 10F:L having similar values. Variables other than Pmax, RD, gs, WUEi, and SSC were unaffected throughout the course of the day. Pmax and gs decreased during the course of the day, but gs decreased more than Pmax in the afternoon, while WUEi was increasing in almost all treatments. SSC increased from the morning until afternoon, whereas RD peaked at noon regardless of the treatment. Generally, Pmax was closely and negatively correlated to SSC, indicating that sugar-sensing mechanisms played an important role in regulation of blueberry leaf photosynthesis. With respect to treatments, Pmax and N content were positively related, while RD was not associated to substrate availability. The enhanced Car/Chl ratio showed a higher photoprotection under the lower sink demand. Changes in the source-sink relationship in 'Brigitta' blueberry led to a rearrangement of physiological and structural leaf traits which allowed adjusting the daily balance between carbon assimilation and absorbed light energy., E. Jorquera-Fontena, M. Alberdi, M. Reyes-Díaz, N. Franck., and Obsahuje bibliografii