The nucleus accumbens (NAc) core is critical in the control of motivated behaviors. The muscarinic acetylcholine receptors (mAChRs) modulating the excitatory inputs into the NAc core have been reported to impact such behaviors. Recent studies suggest that ventral and dorsal regions of the NAc core seem to be innervated by distinct popula tions of glutamatergic projection neurons. To further examine mAChRs modulation of these glutamatergic inputs to the NAc core, we employed intracellular recordings in rat NAc coronal slice preparation to characterize: 1) the effects of muscarine, an mAChRs agonist, on membrane properties of the NAc core neurons; 2) depolarizing synaptic potentials (DPSP) elicited by ventral and dorsal focal electrical stimuli; and 3) paired-pulse response with paired-pulse stimulation. Here we report that the paired-pulse ratio (PPR) elicited by dorsal stimuli was grea ter than that elicited by ventral stimuli. Bath application of muscarine (1-30 μ M) decreased both ventral and dorsal DPSP in a concentration-dependent manner, with no effect on electrophysiological properties of NAc core neurons. Muscarine at 30 μ M also elicited larger depression of dorsal DPSP than ventral DPSP. Moreover, muscarine increased the PPR of both dorsal and ventral DPSP. These data indicate that the glutamatergic afferent fibers traversing the dorsal and ventral NAc are separate, and that differential decrease of distinct afferent excitatory neurotransmission onto NAc core neurons may be mediated by presynaptic mechanisms., X. Jiang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The glycophenotyping of mammalian cells with plant lectins maps aspects of the glycomic profile and disease-associated alterations. A salient step toward delineating their functional dimension is the detection of endogenous lectins. They can translate sugar-encoded changes into cellular responses. Among them, the members of the lectin family of galectins are emerging regulators of cell adhesion, migration and proliferation. Focusing on galectins-1, -3 and -7, we addressed the issue whether their expression is regulated during wound healing in porcine skin as model. A conspicuous upregulation is detected for galectin-1 in the dermis and a neoexpression in the epidermis, where an increased level of galectin-7 was also found. Applying biotinylated tissue lectins as probes, the signal intensities for accessible binding sites decreased, intimating an interaction of the cell lectin with reactive sites. In contrast, galectin-3 parameters remained rather constant. Of note, epidermal cells in culture also showed an increase in expression/presence of galectin-1, measured on the levels of mRNA and protein, in this case by Western blotting and quantitative immunocytochemistry. Used as matrix, galectin-1 conferred resistance to trypsin treatment to attached human keratinocytes and reduced migration into scratch-wound areas in vitro. This report thus presents new information on endogenous lectins in wound healing and differential regulation among the three tested cases., J. Klíma ... [et al.]., and Obsahuje seznam literatury
The activity of 194 neurons was recorded in three subdivisions of the medial geniculate body (74 neurons in the ventral, 62 in the medial and 44 neurons in the dorsal subdivision, i.e. vMGB, mMGB and dMGB) of guinea pigs anesthetized with ketamine-xylazine. The discharge properties of neurons were evaluated by means of peristimulus time histograms (PSTHs), interval histograms (INTHs) and auto-correlograms (ACGs). In the whole MGB, the most frequent PSTH responses to pure tone stimuli were onset (43 %) or chopper (32 %). The onset responses were mostly present in the vMGB, whereas chopper responses dominated in the dMGB. In the whole MGB Poisson-like and bimodal INTHs were found in 46 % and 40 % of neurons, respectively. The mMGB revealed fewer bimodal and more symmetrical types of INTH. In the whole MGB, 60 % of units were found to have ACGs typical for short bursts (<100 ms), 23 % for long bursts (>100 ms) and 15 % of units fired without bursts. Neurons in the vMGB were characterized by short bursting, whereas those in the mMGB and dMGB expressed more activity in the long bursts. The results demonstrate that the type of information processing in the vMGB, which belongs to the ”primary” auditory system, is different from that in two other subdivisions of the MGB., E. Kvašňák, J. Popelář, J. Syka., and Obsahuje bibliografii
We aimed to determine the impact of Ca2+-related disorders induced in intact animal hearts on ultrastructure of the cardiomyocytes prior to occurrence of severe arrhythmias. Three types of acute experiments were performed that are known to be accompanied by disturbances in Ca2+ handling. Langedorffperfused rat or guinea pig hearts subjected to K+-deficient perfusion to induce ventricular fibrillation (VF), burst atrial pacing to induce atrial fibrillation (AF) and open chest pig heart exposed to intramyocardial noradrenaline infusion to induce ventricular tachycardia (VT). Tissue samples for electron microscopic examination were taken during basal condition, prior and during occurrence of malignant arrhythmias. Cardiomyocyte alterations preceding occurrence of arrhythmias consisted of non-uniform sarcomere shortening, disruption of myofilaments and injury of mitochondria that most likely reflected cytosolic Ca2+ disturbances and Ca2+ overload. These disorders were linked with non-uniform pattern of neighboring cardiomyocytes and dissociation of adhesive junctions suggesting defects in cardiac cell-to-cell coupling. Our findings identified heterogeneously distributed high [Ca2+]i-induced subcellular injury of the cardiomyocytes and their junctions as a common feature prior occurrence of VT, VF or AF. In conclusion, there is a link between Ca2+-related disorders in contractility and coupling of the cardiomyocytes pointing out a novel paradigm implicated in development of severe arrhythmias., N. Tribulova, V. Knezl, B. Szeiffova Bacova, T. Egan Benova, C. Viczenczova, E. Gonçalvesova, J. Slezak., and Obsahuje bibliografii
a1_We hypothesize that hypokalemia-related electrolyte imbalance linked with abnormal elevation of intracellular free Ca2+ concentration can cause metabolic disturbances and subcellular alterations resulting in intercellular uncoupling, which favor the occurrence of malignant arrhythmias. Langendorff-perfused guinea pig heart (n = 44) was subjected to a standard Tyrode solution (2.8 mmol/l K+) followed by a K+-deficient solution (1.4 mmol/l K+). Bipolar ECG of the left atria and ventricle was continuously monitored and the incidence of ventricular fibrillation was evaluated. Myocardial tissue sampling was performed during stabilization, hypokalemia and at the onset of fibrillation. Enzyme activities of succinic dehydrogenase, glycogen phosphorylase and 5-nucleotidase were determined using in situ catalytic histochemistry. The main gap junction protein, connexin-43, was labeled using mouse monoclonal antibody and FITC conjugated goat antimouse antibody. Ultrastructure was examined by transmission electron microscopy. The free Ca2+ concentration was measured by the indo-1 method in ventricular cell cultures exposed to a K+-free medium. The results showed that sustained ventricular fibrillation appeared within 15-30 min of low K+ perfusion. This was preceded by ectopic activity, episodes of bigeminy and tachycardia. Hypokalemia induced moderate reversible and sporadically irreversible subcellular alterations of cardiomyocytes and impairment of intercellular junctions, which were heterogeneously distributed throughout myocardium. Patchy areas with decreased enzyme activities and diminished immunoreactivity of connexin-43 were found. Furthermore, lack of external K+ was accompanied by an increase of intracellular Ca2+. The prevention of Ca2+ overload by either 1 mmol/l Ni2+ (Na+/Ca2+ inhibitor), 2.5 mmol/l verapamil, 10 mmol/l d-sotalol or 10 mmol/l tedisamil was associated with the protection agains fibrillation., a2_The results indicate that hypokalemia induces Ca2+ overload injury and disturbances in intercellular coupling. Dispersion of these changes throughout the myocardium may serve as the basis for microreentry circuits and thus favor fibrillation occurrence., N. Tribulová, M. Manoach, D. Varon, L. Okruhlicová, T. Zinman , A. Shainberg., and Obsahuje bibliografii
DNA repair is an active cellular process to respond to constant DNA damage caused by metabolic processes and environmental factors. Since the outcome of DNA damage is generally adverse and long term effects may contribute to oncogenesis, cells have developed a variety of DNA repair mechanisms, which operate depending on the type of DNA damage inflicted. At least 15 Fanconi anemia (FA) proteins interact in a common pathway involved in homologous recombination. Inherited homozygous mutations in any of these FA genes cause a rare disease, Fanconi anemia, characterized by congenit al abnormalities, progressive bone-marrow failure and cancer susceptibility. Heterozygous germline FA mutations predispose to various types of cancer. In addition, somatic FA mutations ha ve been identified in diverse cancer types. Evidence exists that cells deficient in the FA pathway become dependent on alternative pathways for survival. Additional inhibition of such alternative pathways is thus expected to result in cell death, creating a relationship of synthetic lethality. Identifying these relationships can reveal yet unknown mechanisms of DNA repair and new targets for therapy., T. Hucl, E. Gallmeier., and Obsahuje bibliografii a bibliografické odkazy
Microgravity or simulated microgravity induces acute and chronic cardiovascular responses, whose mechanism is pivotal for understanding of physiological adaptation and pathophysiological consequences. We investigated hemodynamic responses of conscious Wistar rats to 45º head-down tilt (HDT) for 7 days. Arterial blood pressure (BP) was recorded by telemetry. Heart rate (HR), spectral properties and the spontaneous baroreflex sensitivity (sBRS) were calculated. Head-up tilt (HUT) was applied for 2 h before and after HDT to assess the degree of any possible cardiovascular deconditio ning. Horizontal control BP and HR were 112.5±2.8 mmHg and 344.7±10 bpm, respectively. HDT elicited an elevation in BP and HR by 8.3 % and 8.8 %, respectively, in less than 1 h. These elevations in BP and HR were maintained for 2 and 3 days, respectively, and then normalized. Heart rate variability was unchanged, while sBRS was permanently reduced from the beginning of HDT (1.01±0.08 vs. 0.74±0.05 ms/mmHg). HUT tests before and after HDT resulted in BP elevations (6.9 vs. 11.6 %) and sBRS reduction (0.44 vs. 0.37 ms/mmHg), respectively. The pressor response during the post-HDT HUT test was accompanied by tachycardia (13.7 %). In conclusion, chronic HDT does not lead to symptoms of cardiovascular deconditioning. However the depressed sBRS and tachycardic response seen during the post-HDT HUT test may indicate disturbances in cardiovascular control., G. Raffai ... [et al.]., and Obsahuje seznam literatury
The aim of this study was to examine the influence of unilateral dorsal root section at the cervicothoracic level of the spinal cord on the spontaneous neuronal activity of medial thalamic nuclei in the rat. Single unit extracellular recordings from thalamic nuclei, nc. parafascicularis and nc. centralis lateralis, were obtained with glass micropipettes. The abnormal bursting activity of these nuclei following deafferentation was registered, although a correlation between the occurrence of this activity and the degree of autotomy behavior was not found. Such bursts were never observed in the studied thalamic nuclei of control rats., Š. Vaculín, M. Franěk, R. Rokyta., and Obsahuje bibliografii