In stressful environments, invasive plants acclimate more efficiently than native plants and hybridization mainly contributes to this process. We examined changes in the morphological characteristics, photosynthetic characteristics, and antioxidant capacity of Sphagneticola trilobata and its hybrids in a low-light environment to explore their invasiveness, with Sphagneticola calendulacea serving as the control. The morphological plasticity of S. trilobata was not dominant, the maximal photochemical efficiency of PSII, actual quantum yield of PSII, and electron transport rate of PSⅡ increased and nonphotochemical quenching decreased, while S. calendulacea and the hybrid produced opposite results. S. trilobata showed fewer spots stained for reactive oxygen species in tissues, with an increase in superoxide dismutase activity. Although S. trilobata is a heliophilous plant, we found that the shade tolerance of S. trilobata and the hybrid were stronger than that of S. calendulacea, which may be one important mechanism of invasion.
The nucleus accumbens (NAc) core is critical in the control of motivated behaviors. The muscarinic acetylcholine receptors (mAChRs) modulating the excitatory inputs into the NAc core have been reported to impact such behaviors. Recent studies suggest that ventral and dorsal regions of the NAc core seem to be innervated by distinct popula tions of glutamatergic projection neurons. To further examine mAChRs modulation of these glutamatergic inputs to the NAc core, we employed intracellular recordings in rat NAc coronal slice preparation to characterize: 1) the effects of muscarine, an mAChRs agonist, on membrane properties of the NAc core neurons; 2) depolarizing synaptic potentials (DPSP) elicited by ventral and dorsal focal electrical stimuli; and 3) paired-pulse response with paired-pulse stimulation. Here we report that the paired-pulse ratio (PPR) elicited by dorsal stimuli was grea ter than that elicited by ventral stimuli. Bath application of muscarine (1-30 μ M) decreased both ventral and dorsal DPSP in a concentration-dependent manner, with no effect on electrophysiological properties of NAc core neurons. Muscarine at 30 μ M also elicited larger depression of dorsal DPSP than ventral DPSP. Moreover, muscarine increased the PPR of both dorsal and ventral DPSP. These data indicate that the glutamatergic afferent fibers traversing the dorsal and ventral NAc are separate, and that differential decrease of distinct afferent excitatory neurotransmission onto NAc core neurons may be mediated by presynaptic mechanisms., X. Jiang ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy