The present study was undertaken to investigate the effect of Glomus mosseae on chlorophyll (Chl) content, Chl fluorescence parameters and chloroplast ultrastructure of beach plum seedlings under 2% NaCl stress. The results showed that compared to control, both Chl a and Chl b contents of NaCl + G. mosseae treatment were significantly lower during the salt stress, while Chl a/b ratio increased significantly. The increase of minimal fluorescence of darkadapted state (F0), and the decrease of maximal fluorescence of dark-adapted state (Fm) and variable fluorescence (Fv) values were inhibited. The maximum quantum yield of PSII photochemistry (Fv/Fm), the maximum energy transformation potential of PSII photochemistry (Fv/F0) and the effective quantum yield of PSII photochemistry (ΦPSII) increased significantly, especially the latter two variables. The values of the photochemical quenching coefficient (qP) and the nonphotochemical quenching (NPQ) were similar between G. mosseae inoculation and noninoculation. It could be concluded that G. mosseae inoculation could protect the photosystem II (PSII) of beach plum, enhance the efficiency of primary light energy conversion and improve the primitive response of photosynthesis under salinity stress. Meanwhile, G. mosseae inoculation was beneficial to maintain the integrity of thylakoid membrane and to protect the structure and function of chloroplast, which suggested that G. mosseae can alleviate the damage of NaCl stress to chloroplast., X. M. Zai ... [et al.]., and Obsahuje bibliografii
The objective of this study was to evaluate the significance of blue light (B) in the growth and photosynthetic capacity of cucumber. Gas exchange, chlorophyll (Chl) fluorescence kinetics, chloroplast ultrastructure, and leaf growth were investigated to explore the influence of three different light qualities of light emitting diodes (LEDs) on plant morphogenesis and the development of photosynthetic apparatus in cucumber (Cucumis sativus) leaves from emergence to full expansion under weak light [50 μmol(photon) m-2 s-1]. We found that B could significantly increase the leaf area (LA), shoot elongation, Chl a/b, net photosynthetic rate, and stomatal conductance (g s). In addition, the comparisons of maximal quantum yield of PSII photochemistry and the photosynthetic performance index between B-, W (white light)-, and R (red light)-grown leaves suggested that B was essential for the development of photosynthetic apparatus under weak light. B-grown leaves had the lowest Chl content under weak light, however, they had well-developed chloroplasts with the highest degree of stacked lamellae and the lowest starch accumulation. This could explain to a considerable extent the highest net photosynthetic rate per Chl unit. The results demonstrated that B optimized photosynthetic performance by improving the photosynthetic rate, increasing LA, and prolonging active photosynthesis duration under low irradiance. Therefore B is necessary to ensure healthy development of chloroplasts and highly efficient photosynthetic functions in cucumbers under a weak light environment. More importantly, our study also provided theoretical and technical support for the development of light environmental control technology., X. Y. Wang, X. M. Xu, J. Cui., and Obsahuje bibliografii