Chill tolerance (time of survival at -5°C) increased in non-diapausing (reproducing) adults of Pyrrhocoris apterus after a gradual, 4-week-long decrease in ambient temperature from 25° to 0°C. The level of chill tolerance attained after cold-acclimation was considerably lower than that in similarly cold-acclimated diapausing adults. Some physiological changes accompanied the cold-acclimation, irrespective of developmental state (diapause vs. reproduction). They were: A decreased oxygen consumption, loss of body water, an increased haemolymph osmolality, an increased proportion of phosphatidylethanolamines vs. a decreased proportion of phosphatidylcholines in membrane phospholipids, and an increased proportion of linoleic vs. a decreased proportion of oleic acid in phosphatidylethanolamines. Such changes could contribute to the limited potential for cold-acclimation found in non-diapausing insects. Other physiological changes appeared to require the induction of diapause prior to cold-acclimation. They were: Down regulation of ice nucleators resulting in a lowering of the individual supercooling point, synthesis and accumulation of specific "winter" polyols, an increased proportion of palmitic acid in membrane phospholipids; and regulation of the concentrations of Na+ and K+ in the haemolymph. The potential contributions of these changes to the cold hardiness of P. apterus are discussed.
To determine the relationship between protein expression and insect diapause, a proteomic approach was used to investigate the proteins extracted from larvae of the wheat blossom midge Sitodiplosis mosellana Gehin at different developmental stages, including pre-diapause, over-summering diapause, over-wintering diapause and post-diapause. Using 2-DE gels stained with coomassie brilliant blue, about 300 protein spots were detected in the extracts of pre-diapause larvae and 275 for those in each of the other stages. There were 91, 92 and 95 protein spots that showed more than a 2-fold change in abundance in the over-summering diapause, over-wintering diapause and post-diapause stages compared with pre-diapause. Eight protein spots, which showed the greatest difference in the larvae at different stages of diapause, were analyzed using Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Seven of them were successfully identified from their peptide mass fingerprints using the NCBInr database. They were proopiomelanocortin, NADH dehydrogenase subunit 1 and F10F2.5, which were up-regulated or unique to pre-diapause larvae, IKK interacting protein isoform 2 up-regulated in diapause and post-diapause larvae, GA10647-PA unique in over-wintering diapause larvae, purple CG16784-PB isoform B and B0228.6 up-regulated in over-summering and over-wintering diapause larvae. The potential functions of these proteins during wheat blossom midge diapause are discussed.
Progeny of the flesh fly Sarcophaga bullata exposed to short day length show a maternal effect that prevents the expression of pupal diapause. Although ecological aspects of this effect are well studied, not enough is known about the molecular mechanisms underlying this maternal effect. In this study, two-dimensional electrophoresis was performed to detect differences of the abundance of certain proteins in the ovaries of this fly kept under long day and short day conditions for 2 days after eclosion. Eleven proteins that were abundant and showed significant changes were selected for mass spectrometric identification. Ovary proteins that increased in abundance under short-day conditions were similar to twinstar CG4254-PA, muscle protein 20-like protein, GA13413-PA, gene analogous to small peritrophins (Gasp CG10287-PA) and Ribosomal protein LP1 CG4087-PA. Ovary proteins that decreased in abundance under short-day conditions were similar to the ATP synthase beta subunit, fk506-binding protein and storage protein-binding protein. The 2-D proteome maps included 2 additional unknown proteins that were more abundant and 1 that was less abundant in the ovaries of 2-day old short-day females. Twinstar CG4254-PA, muscle protein 20-like protein and GA13413-PA harbour an actin-binding domain. That the 3 actin-binding proteins increase in abundance suggests that it is likely that an alteration in the actin cytoskeleton is involved in this maternal effect in the flesh fly., Aiqing Li ... [et al.]., and Obsahuje seznam literatury
We studied the development of the indirect flight muscles and reproductive organs in long-winged (macropterous) adults of the flightless bug Pyrrhocoris apterus (L.) and the factors involved in flight muscles histolysis by means of total protein analysis. Both the extirpation of the corpus allatum, an endocrine gland that is the sole source of juvenile hormone, and sham operation accelerated histolysis and decreased the level of the total protein content of the flight muscles to the same extent. Degeneration of flight muscles was not a result of allatectomy but rather a consequence of injury, followed by resumption of enhanced food intake, because it was stimulated also by the removal of wings. Transfer of penultimate instar larvae to a diapause-inducing short-day photoperiod did not prevent imaginal growth and histolysis of flight muscles, but inhibited growth of ovaries in females and maturation of accessory glands in adult males. Thus inactivation of the corpus allatum in diapausing macropters does not prevent imaginal growth of their flight muscles. Application of a high dose of methoprene to the surface of intact long-day macropterous adults induced precocious histolysis of flight muscles and growth of ovaries in females and accessory glands in males. Prolonged starvation of macropterous adults had only a small effect on the histolysis of their flight muscles. The results indicate that imaginal growth and histolysis of indirect flight muscles in macropterous individuals of P. apterus are largely juvenile hormone-independent processes that are programmed to occur spontaneously, but can be affected by various internal and external factors.
n this study we addressed a question of whether experimental manipulations that increase life span also reduce physical activity and molecular oxidative damage. We used three phenotypes of male and female Pyrrhocoris apterus that survive for different lengths of time, diapausing insects, reproductive insects and insects from which the corpus allatum, the source of juvenile hormone, was surgically removed. Protein carbonyl content of the thoracic muscles was used as an index of molecular oxidative modification. Diapause or ablation of the corpus allatum (allatectomy) was associated with an extended life span of both sexes, but only those individuals that were in diapause were less active. The carbonyl content, both relative (per protein unit) and absolute (per thorax) increased with age in reproductive insects of both sexes. However, the associations between the carbonyl content and diapause and allatectomy differed in males and females. In males, the carbonyl content was not associated with either diapause or allatectomy. There was no age-related increase in the relative and absolute carbonyl levels in diapausing females, while only the increase in the relative carbonyl level was absent in allectomized females. Overall, the results indicate that both allatectomy and diapause prolonged life span, but had different and sex-specific effects on locomotor activity and carbonyl content. Only the extension of the life span of diapausing females was correlated with both reduced locomotor activity and reduced carbonyl content., Marcela Buricova, Magdalena Hodkova., and Obsahuje seznam literatury
Seasonal adaptations of green lacewings (Neuroptera: Chrysopidae) and their role in the control of aphid populations are discussed. The chrysopids of temperate zones face seasonal changes and must escape cyclic adversity. One way is via the number of broods per year. Most green lacewings are facultatively multivoltine, with the succession of generations most often regulated by photomediated diapause. Others are univoltine and some extend their life-cycle to two years in cold or dry environments. Synchronization is an important feature of seasonality, often starting in spring. In univoltine species, it is sometimes the result of subtle mechanisms, such as double contradictory signals (short plus long day lengths) for reactivation in spring, or a multi-receptivity of the preimaginal instars to photoperiod throughout a year, combined with photo-controlled and synchronized egg laying in late summer. Only one North American species is known to enter a surnumerary food-mediated diapause in summer. Every postembryonic instar may undergo diapause depending on the species. The timing and impact of the spring resumption in aphid consumption depends on their overwintering strategy.
As far is known, chrysopids are intolerant of freezing, but their supercooling points are low enough to enable them to endure hard frost. The numbers of overwintering specimens of green lacewings in the field depend on the structure of the assemblages in the previous growing season. Three examples are used to show that the overwintering populations are different in the different biotopes and dependent on the way the dominant species overwinter. Artificial chambers proposed for overwintering adults of common green lacewings afford them protection during diapause and enhance their predatory efficiency in spring.
The long-winged (macropterous) and short-winged (brachypterous) adult males of Pyrrhocoris apterus (L.) from temperate (Czech Republic) and Mediterranean (Israel) populations were analysed for the sexual activity and the functional activity of their accessory glands. The sexual activity of the males reared either under long-day (18L : 6D) or short-day (12L : 12D) conditions was determined by their capability to mate with 5-day-old reproductive females of the brachypterous morph and to fertilize the eggs. The functional activity of accessory glands was characterized by the presence of a specific immuno-marker. Sexual activity of fasting macropterous males from both temperate and Mediterranean populations was almost as high as that observed in the reproductive brachypterous ones. These findings were also confirmed by an immunotest. Contrary to the temperate macropterous males, the feeding arrest in temperate macropterous females was coupled with a non-diapause inhibition of reproduction in spite of long days. A similar kind of difference was observed also in the Mediterranean macropterous bugs reared under short-day conditions. The results showed the sexual difference in reproductive activity of the macropterous morph in P. apterus.
The aestivo-hibernation in central Greece of the aphidophagous ladybeetle Hippodamia (Semiadalia) undecimnotata (Schneider) (Coleoptera: Coccinellidae) was studied. H. undecimnotata is a multivoltine species in Greece. In the lowlands, all instars are abundant in spring, becoming scarce from July until the end of October and they are absent in winter. In June, most H. undecimnotata adults migrate to mountainous aestivo-hibernation sites. The duration of pre-oviposition period in females sampled monthly from the summits of the mountains Chlomo and Kitheron in central Greece and transferred to laboratory conditions of high temperature (25°C), long day (16L : 8D), and abundance of aphids (Aphis fabae), indicated that the H. undecimnotata females were in diapause during July and August. The diapause gradually terminated from late August to late October and was followed by a period of quiescence extending from November to March of the following year. During the summer diapause, arrested ovarian development was indicated by the undifferentiated state of the ovaries in all females. Males and females had enlarged fat bodies, and the median preoviposition period after the transfer to the laboratory was 92 days in early July and 64 days in early August. During the winter quiescence, arrested ovarian development was characterized by immature ovaries in females and, in some samples, by vitellogenic resorption in a few females. In winter, adults contained varying amounts of fat body reserves, and the median preoviposition period of females transferred to breeding conditions was 30 days in early November and 16 days in mid January.
Insect dormancy responses, in the broad sense of modifications of development, are examined from a general perspective. The range of responses is extraordinarily wide because environments are diverse, different taxa have different evolutionary histories, adaptations are needed for both seasonal timing and resistance to adversity, and not only development but also many other aspects of the life-cycle must be coordinated. Developmental options are illustrated by examining the wide range of ways in which development can be modified, the fact that each individual response consists of several components, and the different potential durations of the life-cycle. The concepts of alternative life-cycle pathways (chosen according to current and likely future environmental conditions) and of active and passive default responses are treated. Also introduced are aspects of variation and trade-offs.
Some general conclusions that help in understanding dormancy responses emerge from such an examination. Many options are available (cf. Table 1). The nature of the habitat, especially its predictability, determines the potential effectiveness of many of the developmental options. Any particular set of responses reflects evolutionary history and hence depends on past as well as current environments. It is not necessarily obvious what kinds of selection, especially requirements for timing versus resistance to adversity, explain a particular life cycle. Life-cycle pathways have multiple components, so that components cannot be analyzed in isolation. A given feature, such as delayed development, can have multiple roles. Default responses can be either active (development continues unless signalled otherwise) or passive (development stops unless signalled otherwise), making necessary a broad approach to understanding the action of environmental cues. Even relatively minor effects that fine-tune dormancy responses enhance survival, but may be difficult to detect or measure. Trade-offs are not inevitable, not only when certain resources are surplus, but also because resources in very short supply (constraints) cannot be traded off. Life-cycle components are widely, but not universally, coordinated. These conclusions confirm that the range of dormancy responses is wider, more complex and more integrated than has often been recognized.
The relations between the patterns of discontinuous gas exchange cycles (DGCs) and water loss were investigated in non-chilled diapausing pupae of the white cabbage butterfly Pieris brassicae kept at room temperature (22-24°C) in Petri dishes. An electrolytic respirometer, combined with an infrared (IR) actographic device was used for the simultaneous recordings of metabolic rate, cyclic release of carbon dioxide (bursts), passive suction inspirations (PSIs) and body movements. The patterns of cyclic gas exchange in four- and five-month-old non-chilled diapausing pupae varied individually to a considerable extent. About 40% of the pupae displayed long DGCs lasting 1-3 h, while the interburst periods were characterised by rare and almost regular large PSIs succeeding at intervals of 1-4 min. Nearly 30% of the pupae exhibited short DGCs lasting 3-5 min, while between the bursts there occurred unclear frequent gas exchange microcycles. Standard metabolic rate (SMR) did not reveal significant differences between long DGCs and short DGCs ranging from 32-56 (mean 47.6 ± 4.6) ml O2 g-1 h-1, and 28-61 (mean 44.95 ± 5.3) ml O2 g-1 h-1, respectively. The mentioned levels of SMR were characteristic of diapausing pupae.
Water loss in pupae with long DGCs was determined gravimetrically to be 0.29 ± 0.1 mg g-1 day1. At the same time, water loss in pupae that showed only short DGCs and irregular microcycles was 1.73 ± 0.31 mg g-1 day-1, which was significantly higher than in individuals characterised by long DGCs. We suggest that water loss in the non-chilled diapausing pupae may depend significantly on the patterns of cyclic gas exchange: long cycles and rare but deep PSIs exerted a marked water conserving effect.