The cold hardiness of individuals from overwintering populations of a freeze susceptible bug Pyrrhocoris apterus from central and southern Europe differed significantly. Supercooling point (SCP) correlated well with both lethal temperature (LT50) and lethal time (Lt50), and is agood index of cold hardiness of adults during and after diapause. In January, diapause terminated, but cold hardiness was similar to that recorded in November; cold hardiness decreased slightly in March and markedly in May. Short exposure (less than a week) to higher temperatures before termination of diapause did not reduce the cold hardiness. Cold hardiness did not closely follow air temperatures.The Bulgarian bugs retained lower cold hardiness regardless of acclimation to harsh field conditions in the Czech Republic. The interpopulation difference is therefore a heritable character representing an adjustment to local climates.
Diapausing larvae of Aphidoletes aphidimyza (Diptera: Cecidomyiidae) had relatively low supercooling points (SCP) ranging from -19.0 to -26.4°C. None of the specimens that froze at this temperature survived. A high survival rate (up to 87%) at -10°C for 10 days was observed in supercooled larvae. Such features are characteristic for insects that use a chill-tolerance strategy of cold hardiness. However, the cocoons formed by the diapausing larvae were penetrable by external ice crystals and the larvae showed a relatively high survival rate (23 - 34%) at -10°C for 10 days also in the frozen state caused by inoculation by external ice at high subzero temperatures. Such a duality with respect to cold hardiness strategies seems to be ecologically relevant to overwintering in soil habitats where there may be unpredictable contact with external ice.
Supercooling point (SCP), survival at low temperatures, rate of water loss in dry air at 20°C and survival under desiccating conditions of eggs of Polydesmus angustus (Diplopoda) were determined. The results were compared with those obtained previously for the eight post-embryonic stadia, to obtain an overview of the changes in resistance to cold and desiccation throughout the species' development. The SCP temperatures of egg batches ranged from -14.8 to -30.6°C and were significantly lower than those of the active stadia. Eggs were not affected by prolonged exposure to low temperature above 0°C and survived much better than active stadia when cooled to -6 and -10°C. This indicates that the cold hardiness of P. angustus is highest in the egg stage and decreases during development. On the other hand, the rate of water loss was significantly higher from eggs than from active stadia. When eggs were taken out of their protective nest, they lost water at the high rate of 7% min-1 in dry air. They also survived for a shorter time than active stadia at 76% RH and 20°C. The resistance to desiccation of P. angustus is lowest at the egg stage and increases during development. The results suggest that the life cycle of P. angustus may have responded to selection pressures other than cold and drought, and do not support the hypothesis that cold hardiness and resistance to desiccation are overlapping adaptations in terrestrial arthropods.
Great progress has recently been made in cryobiology. One field, however, has been neglected: the temporal sequence of the effects of photoperiod and temperature, and their relative importance in cold hardening. This is relevant to the question of importance of diapause in cold-hardiness. Denlinger (1991) outlined the categories of such relations and stressed a great need for further detailed research. A survey of studies done over the past decade revealed many gaps in the evidence and the ambiguous nature of the data on the photoperiodic regulation of cold-hardiness. We hope that this review will stimulate further research in this field. Among several directions where research is most needed we have stressed (1) simultaneous recording of changes in survival and dynamics of suspected cryoprotectants (stressed also by Danks, 1996), (2) checking the regulation of different phases of cold hardening, and (3) discrimination between direct and indirect (mediated via neuroendocrine system) effects of environmental cues on cold hardening.
Chill tolerance (time of survival at -5°C) increased in non-diapausing (reproducing) adults of Pyrrhocoris apterus after a gradual, 4-week-long decrease in ambient temperature from 25° to 0°C. The level of chill tolerance attained after cold-acclimation was considerably lower than that in similarly cold-acclimated diapausing adults. Some physiological changes accompanied the cold-acclimation, irrespective of developmental state (diapause vs. reproduction). They were: A decreased oxygen consumption, loss of body water, an increased haemolymph osmolality, an increased proportion of phosphatidylethanolamines vs. a decreased proportion of phosphatidylcholines in membrane phospholipids, and an increased proportion of linoleic vs. a decreased proportion of oleic acid in phosphatidylethanolamines. Such changes could contribute to the limited potential for cold-acclimation found in non-diapausing insects. Other physiological changes appeared to require the induction of diapause prior to cold-acclimation. They were: Down regulation of ice nucleators resulting in a lowering of the individual supercooling point, synthesis and accumulation of specific "winter" polyols, an increased proportion of palmitic acid in membrane phospholipids; and regulation of the concentrations of Na+ and K+ in the haemolymph. The potential contributions of these changes to the cold hardiness of P. apterus are discussed.